Hide metadata

dc.date.accessioned2023-02-14T16:53:27Z
dc.date.available2023-02-14T16:53:27Z
dc.date.created2022-10-20T10:38:27Z
dc.date.issued2022
dc.identifier.citationF. Van Stappen, Van McBeck, Jessica Ann Cordonnier, Benoit Pijnenburg, R.P.J. Renard, Francois Spiers, C.J. Hangx, S.J.T. . 4D Synchrotron X-ray Imaging of Grain Scale Deformation Mechanisms in a Seismogenic Gas Reservoir Sandstone During Axial Compaction. Rock Mechanics and Rock Engineering. 2022, 55(8), 4697-4715
dc.identifier.urihttp://hdl.handle.net/10852/99963
dc.description.abstractAbstract Understanding the grain-scale processes leading to reservoir compaction during hydrocarbons production is crucial for enabling physics-based predictions of induced surface subsidence and seismicity hazards. However, typical laboratory experiments only allow for pre- and post-experimental microstructural investigation of deformation mechanisms. Using high-resolution time-lapse X-ray micro-tomography imaging (4D µCT) during triaxial deformation, the controlling grain-scale processes can be visualized through time and space at realistic subsurface conditions. We deformed a sample of Slochteren sandstone, the reservoir rock from the seismogenic Groningen gas field in the Netherlands. The sample was deformed beyond its yield point (axial strain > 15%) in triaxial compression at reservoir P–T-stress conditions (100 °C, 10 MPa pore pressure, 40 MPa effective confining pressure). A total of 50 three-dimensional µCT scans were obtained during deformation, at a spatial resolution of 6.5 µm. Time lapse imaging plus digital volume correlation (DVC) enabled identification of the grain-scale deformation mechanisms operating throughout the experiment, for the first time, both at small, reservoir-relevant strains (< 1%), and in the approach to brittle failure at strains > 10%. During small-strain deformation, the sample showed compaction through grain rearrangement accommodated by inter-granular slip and normal displacements across grain boundaries, in particular, by closure of open grain boundaries or compaction of inter-granular clay films. At intermediate and large strains (> 4%), grain fracturing and pore collapse were observed, leading to sample-scale brittle failure. These observations provide key input for developing microphysical models describing compaction of the Groningen and other producing (gas) reservoirs.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.title4D Synchrotron X-ray Imaging of Grain Scale Deformation Mechanisms in a Seismogenic Gas Reservoir Sandstone During Axial Compaction
dc.title.alternativeENEngelskEnglish4D Synchrotron X-ray Imaging of Grain Scale Deformation Mechanisms in a Seismogenic Gas Reservoir Sandstone During Axial Compaction
dc.typeJournal article
dc.creator.authorF. Van Stappen, Van
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorCordonnier, Benoit
dc.creator.authorPijnenburg, R.P.J.
dc.creator.authorRenard, Francois
dc.creator.authorSpiers, C.J.
dc.creator.authorHangx, S.J.T.
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2063133
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Rock Mechanics and Rock Engineering&rft.volume=55&rft.spage=4697&rft.date=2022
dc.identifier.jtitleRock Mechanics and Rock Engineering
dc.identifier.volume55
dc.identifier.issue8
dc.identifier.startpage4697
dc.identifier.endpage4715
dc.identifier.doihttps://doi.org/10.1007/s00603-022-02842-7
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0723-2632
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International