Hide metadata

dc.date.accessioned2023-02-14T16:10:28Z
dc.date.available2023-02-14T16:10:28Z
dc.date.created2022-05-22T23:03:48Z
dc.date.issued2022
dc.identifier.citationAkbar, Rahmad Robert, Philippe Paul Auguste Weber, Cédric R. Widrich, Michael Frank, Robert Pavlovic, Milena Scheffer, Lonneke Chernigovskaia, Maria Snapkow, Igor Slabodkin, Andrei Mehta, Brij Bhushan Miho, Enkelejda Lund-Johansen, Fridtjof Andersen, Jan Terje Hochreiter, Sepp Haff, Ingrid Hobæk Klambauer, Günter Sandve, Geir Kjetil Ferkingstad Greiff, Victor . In silico proof of principle of machine learning-based antibody design at unconstrained scale. mAbs. 2022, 14:e2031482(1), 1-18
dc.identifier.urihttp://hdl.handle.net/10852/99926
dc.description.abstractGenerative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.
dc.languageEN
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.titleIn silico proof of principle of machine learning-based antibody design at unconstrained scale
dc.title.alternativeENEngelskEnglishIn silico proof of principle of machine learning-based antibody design at unconstrained scale
dc.typeJournal article
dc.creator.authorAkbar, Rahmad
dc.creator.authorRobert, Philippe Paul Auguste
dc.creator.authorWeber, Cédric R.
dc.creator.authorWidrich, Michael
dc.creator.authorFrank, Robert
dc.creator.authorPavlovic, Milena
dc.creator.authorScheffer, Lonneke
dc.creator.authorChernigovskaia, Maria
dc.creator.authorSnapkow, Igor
dc.creator.authorSlabodkin, Andrei
dc.creator.authorMehta, Brij Bhushan
dc.creator.authorMiho, Enkelejda
dc.creator.authorLund-Johansen, Fridtjof
dc.creator.authorAndersen, Jan Terje
dc.creator.authorHochreiter, Sepp
dc.creator.authorHaff, Ingrid Hobæk
dc.creator.authorKlambauer, Günter
dc.creator.authorSandve, Geir Kjetil Ferkingstad
dc.creator.authorGreiff, Victor
cristin.unitcode185,53,18,12
cristin.unitnameAvdeling for immunologi og transfusjonsmedisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2026272
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=mAbs&rft.volume=14:e2031482&rft.spage=1&rft.date=2022
dc.identifier.jtitlemAbs
dc.identifier.volume14
dc.identifier.issue1
dc.identifier.doihttps://doi.org/10.1080/19420862.2022.2031482
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1942-0862
dc.type.versionPublishedVersion
cristin.articleid2031482
dc.relation.projectSKGJ/SKGJ-MED-017
dc.relation.projectKF/215817
dc.relation.projectNFR/311341
dc.relation.projectNFR/300740
dc.relation.projectEC/H2020/825821


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 4.0 International
This item's license is: Attribution-NonCommercial 4.0 International