Hide metadata

dc.date.accessioned2023-02-07T17:39:16Z
dc.date.available2023-02-07T17:39:16Z
dc.date.created2022-06-12T13:10:08Z
dc.date.issued2022
dc.identifier.citationAssar, Alireza Martinho, Filipe Larsen, Jes Saini, Nishant Shearer, Denver Moro, Marcos V. Stulen, Fredrik Arnesen Grini, Sigbjørn Engberg, Sara Stamate, Eugen Schou, Jørgen Vines, Lasse Canulescu, Stela Platzer-Björkman, Charlotte Hansen, Ole . Gettering in polySi/SiO xpassivating contacts enables Si-based tandem solar cells with high thermal and contamination resilience. ACS Applied Materials & Interfaces. 2022, 14(12), 14342-14358
dc.identifier.urihttp://hdl.handle.net/10852/99723
dc.description.abstractMultijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitaxy or high-temperature constraints, where the interface between subcells is subject to a trade-off between transmittance, electrical interconnection, and bottom cell degradation. Using polySi/SiOx passivating contacts for Si, this degradation can be largely circumvented by tuning the polySi/SiOx stacks to promote gettering of contaminants admitted into the Si bottom cell during the top cell synthesis. Applying this concept to the low-cost top cell chalcogenides Cu2ZnSnS4 (CZTS), CuGaSe2 (CGSe), and AgInGaSe2 (AIGSe), fabricated under harsh S or Se atmospheres above 550 °C, we show that increasing the heavily doped polySi layer thickness from 40 to up to 400 nm prevents a reduction in Si carrier lifetime by 1 order of magnitude, with final lifetimes above 500 μs uniformly across areas up to 20 cm2. In all cases, the increased resilience was correlated with a 99.9% reduction in contaminant concentration in the c-Si bulk, provided by the thick polySi layer, which acts as a buried gettering layer in the tandem structure without compromising the Si passivation quality. The Si resilience decreased as AIGSe > CGSe > CZTS, in accordance with the measured Cu contamination profiles and higher annealing temperatures. An efficiency of up to 7% was achieved for a CZTS/Si tandem, where the Si bottom cell is no longer the limiting factor.
dc.languageEN
dc.titleGettering in polySi/SiO xpassivating contacts enables Si-based tandem solar cells with high thermal and contamination resilience
dc.title.alternativeENEngelskEnglishGettering in polySi/SiO xpassivating contacts enables Si-based tandem solar cells with high thermal and contamination resilience
dc.typeJournal article
dc.creator.authorAssar, Alireza
dc.creator.authorMartinho, Filipe
dc.creator.authorLarsen, Jes
dc.creator.authorSaini, Nishant
dc.creator.authorShearer, Denver
dc.creator.authorMoro, Marcos V.
dc.creator.authorStulen, Fredrik Arnesen
dc.creator.authorGrini, Sigbjørn
dc.creator.authorEngberg, Sara
dc.creator.authorStamate, Eugen
dc.creator.authorSchou, Jørgen
dc.creator.authorVines, Lasse
dc.creator.authorCanulescu, Stela
dc.creator.authorPlatzer-Björkman, Charlotte
dc.creator.authorHansen, Ole
cristin.unitcode185,15,4,0
cristin.unitnameFysisk institutt
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1
dc.identifier.cristin2031131
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Applied Materials & Interfaces&rft.volume=14&rft.spage=14342&rft.date=2022
dc.identifier.jtitleACS Applied Materials & Interfaces
dc.identifier.volume14
dc.identifier.issue12
dc.identifier.startpage14342
dc.identifier.endpage14358
dc.identifier.doihttps://doi.org/10.1021/acsami.2c00319
dc.type.documentTidsskriftartikkel
dc.source.issn1944-8244
dc.type.versionSubmittedVersion
dc.relation.projectNFR/325573


Files in this item

Appears in the following Collection

Hide metadata