Hide metadata

dc.date.accessioned2023-01-26T17:34:41Z
dc.date.available2023-01-26T17:34:41Z
dc.date.created2022-12-06T14:53:45Z
dc.date.issued2022
dc.identifier.citationVan Wyk De Vries, Maximillian Bhushan, Shashank Jacquemart, Mylène Deschamps-Berger, Cesar Berthier, Etienne Gascoin, Simon Shean, David E. Shugar, Dan H. Kääb, Andreas . Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya. Natural Hazards and Earth System Sciences. 2022, 22(10), 3309-3327
dc.identifier.urihttp://hdl.handle.net/10852/99277
dc.description.abstractAbstract. Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×106 m3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock–ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
dc.title.alternativeENEngelskEnglishPre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
dc.typeJournal article
dc.creator.authorVan Wyk De Vries, Maximillian
dc.creator.authorBhushan, Shashank
dc.creator.authorJacquemart, Mylène
dc.creator.authorDeschamps-Berger, Cesar
dc.creator.authorBerthier, Etienne
dc.creator.authorGascoin, Simon
dc.creator.authorShean, David E.
dc.creator.authorShugar, Dan H.
dc.creator.authorKääb, Andreas
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2089543
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Natural Hazards and Earth System Sciences&rft.volume=22&rft.spage=3309&rft.date=2022
dc.identifier.jtitleNatural Hazards and Earth System Sciences
dc.identifier.volume22
dc.identifier.issue10
dc.identifier.startpage3309
dc.identifier.endpage3327
dc.identifier.doihttps://doi.org/10.5194/nhess-22-3309-2022
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1561-8633
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International