Hide metadata

dc.date.accessioned2023-01-16T18:14:45Z
dc.date.available2023-01-16T18:14:45Z
dc.date.created2023-01-10T11:08:30Z
dc.date.issued2022
dc.identifier.citationde Moortel, Ineke Howson, Thomas A. . (When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?. The Astrophysical Journal (ApJ). 2022, 941(1)
dc.identifier.urihttp://hdl.handle.net/10852/98819
dc.description.abstractAbstract Why the atmosphere of the Sun is orders of magnitudes hotter than its surface is a long standing question in solar physics. Over the years, many studies have looked at the potential role of magnetohydrodynamic (MHD) waves in sustaining these high temperatures. In this study, we use 3D MHD simulations to investigate (driven) transverse waves in a coronal loop. As the boundary-driven transverse waves propagate along the flux tube, the radial density profile leads to resonant absorption (or mode coupling) and phase mixing in the boundaries of the flux tube and the large velocity shears are subject to the Kelvin–Helmholtz instability (KHI). The combination of these effects leads to enhanced energy dissipation and wave heating. Considering both resonant and nonresonant boundary driving as well as different densities for the flux tube, we show that only wave heating associated with a resonant driver in a lower-density loop (with a loop core density ∼5 × 10 −13 kg m −3 ) is able to balance radiative losses in the loop shell. Changing the model parameters to consider a denser loop or a driver with a nonresonant frequency, or both, leads to cooling of the coronal loop as the energy losses are greater than the energy injection and dissipation rates.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.title(When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?
dc.title.alternativeENEngelskEnglish(When) Can Wave Heating Balance Optically Thin Radiative Losses in the Corona?
dc.typeJournal article
dc.creator.authorde Moortel, Ineke
dc.creator.authorHowson, Thomas A.
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2103915
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=941&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume941
dc.identifier.issue1
dc.identifier.pagecount10
dc.identifier.doihttps://doi.org/10.3847/1538-4357/aca072
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.type.versionPublishedVersion
cristin.articleid85
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International