Hide metadata

dc.date.accessioned2022-12-07T16:42:48Z
dc.date.available2022-12-07T16:42:48Z
dc.date.created2022-11-29T11:25:23Z
dc.date.issued2022
dc.identifier.citationGrant, Samuel D. T. Jess, D.B. Stangalini, M. Jafarzadeh, Shahin Fedun, V. Verth, G. Keys, P.H. Rajaguru, S.P. Uitenbroek, Han Macbride, C.D. Bate, W. Gilchrist-Millar, C.A. . The Propagation of Coherent Waves Across Multiple Solar Magnetic Pores. The Astrophysical Journal (ApJ). 2022, 938(2)
dc.identifier.urihttp://hdl.handle.net/10852/97964
dc.description.abstractAbstract Solar pores are efficient magnetic conduits for propagating magnetohydrodynamic wave energy into the outer regions of the solar atmosphere. Pore observations often contain isolated and/or unconnected structures, preventing the statistical examination of wave activity as a function of the atmospheric height. Here, using high-resolution observations acquired by the Dunn Solar Telescope, we examine photospheric and chromospheric wave signatures from a unique collection of magnetic pores originating from the same decaying sunspot. Wavelet analysis of high-cadence photospheric imaging reveals the ubiquitous presence of slow sausage-mode oscillations, coherent across all photospheric pores through comparisons of intensity and area fluctuations, producing statistically significant in-phase relationships. The universal nature of these waves allowed an investigation of whether the wave activity remained coherent as they propagate. Utilizing bisector Doppler velocity analysis of the Ca ii 8542 Å line, alongside comparisons of the modeled spectral response function, we find fine-scale 5 mHz power amplification as the waves propagate into the chromosphere. Phase angles approaching zero degrees between co-spatial line depths spanning different line depths indicate standing sausage modes following reflection against the transition region boundary. Fourier analysis of chromospheric velocities between neighboring pores reveals the annihilation of the wave coherency observed in the photosphere, with examination of the intensity and velocity signals from individual pores indicating they behave as fractured waveguides, rather than monolithic structures. Importantly, this work highlights that wave morphology with atmospheric height is highly complex, with vast differences observed at chromospheric layers, despite equivalent wave modes being introduced into similar pores in the photosphere.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Propagation of Coherent Waves Across Multiple Solar Magnetic Pores
dc.title.alternativeENEngelskEnglishThe Propagation of Coherent Waves Across Multiple Solar Magnetic Pores
dc.typeJournal article
dc.creator.authorGrant, Samuel D. T.
dc.creator.authorJess, D.B.
dc.creator.authorStangalini, M.
dc.creator.authorJafarzadeh, Shahin
dc.creator.authorFedun, V.
dc.creator.authorVerth, G.
dc.creator.authorKeys, P.H.
dc.creator.authorRajaguru, S.P.
dc.creator.authorUitenbroek, Han
dc.creator.authorMacbride, C.D.
dc.creator.authorBate, W.
dc.creator.authorGilchrist-Millar, C.A.
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2083783
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=938&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume938
dc.identifier.issue2
dc.identifier.pagecount17
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac91ca
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.type.versionPublishedVersion
cristin.articleid143
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International