Hide metadata

dc.date.accessioned2022-11-24T17:22:49Z
dc.date.available2022-11-24T17:22:49Z
dc.date.created2022-11-22T16:32:22Z
dc.date.issued2022
dc.identifier.citationCutajar, Michelle Machado, Fabricio Crucitti, Valentina Cuzzucoli Braovac, Susan-Diana Stockman, Robert A. Howdle, Steven M. Harding, Stephen E. . Comparative hydrodynamic characterisation of two hydroxylated polymers based on alpha-pinene or oleic acid-derived monomers for potential use as archaeological consolidants. Scientific Reports. 2022, 12(1)
dc.identifier.urihttp://hdl.handle.net/10852/97799
dc.description.abstractAbstract The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass M w of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers—particularly TPA7—have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.
dc.languageEN
dc.publisherNature Portfolio
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleComparative hydrodynamic characterisation of two hydroxylated polymers based on alpha-pinene or oleic acid-derived monomers for potential use as archaeological consolidants
dc.title.alternativeENEngelskEnglishComparative hydrodynamic characterisation of two hydroxylated polymers based on alpha-pinene or oleic acid-derived monomers for potential use as archaeological consolidants
dc.typeJournal article
dc.creator.authorCutajar, Michelle
dc.creator.authorMachado, Fabricio
dc.creator.authorCrucitti, Valentina Cuzzucoli
dc.creator.authorBraovac, Susan-Diana
dc.creator.authorStockman, Robert A.
dc.creator.authorHowdle, Steven M.
dc.creator.authorHarding, Stephen E.
cristin.unitcode185,27,85,0
cristin.unitnameSamlingsforvaltning
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2078575
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Scientific Reports&rft.volume=12&rft.spage=&rft.date=2022
dc.identifier.jtitleScientific Reports
dc.identifier.volume12
dc.identifier.issue1
dc.identifier.pagecount14
dc.identifier.doihttps://doi.org/10.1038/s41598-022-21027-4
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2045-2322
dc.type.versionPublishedVersion
cristin.articleid18411


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International