Hide metadata

dc.date.accessioned2022-11-22T17:29:35Z
dc.date.available2022-11-22T17:29:35Z
dc.date.created2022-08-23T11:52:53Z
dc.date.issued2022
dc.identifier.citationCatalán-Martínez, D. Navarrete, L. Tarach, M. Santos-Blasco, J. Vøllestad, Einar Norby, Truls Budd, M.I. Veenstra, P. Serra, J.M. . Thermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells. International Journal of Hydrogen Energy. 2022, 47(65), 27787-27799
dc.identifier.urihttp://hdl.handle.net/10852/97709
dc.description.abstractElectrolysis based on renewable energies offers a promising carbon-free solution for hydrogen generation and storage. The recent developments of proton ceramic electrolysis cells operating at intermediate temperatures bear promise of superior energy efficiency compared to oxide ion conducting electrolytes. Here, a proton ceramic Single Engineering Unit (SEU) design is optimized for steam electrolysis using a computational fluid dynamics (CFD) model implemented in a COMSOL Multiphysics software. The SEU is an all-in-one tubular cell arrangement that constitutes the smallest electrolysis unit and enables efficient, adaptable pressurized hydrogen generation. The parametrical modelling study is conducted for two adiabatic operation scenarios with distinct steam conversion rates and tested for multiple key parameters, namely internal and external chamber pressures and inlet stream temperature. The modelling results show that low steam conversions enable operation at higher current densities and that the thermoneutral voltage for a fixed steam conversion is highly sensitive to the process conditions and operation modes. The increment of the pressure of the generated hydrogen implies a reduced production rate at thermoneutral voltage, although it can be compensated with an enhanced steam pressure or a reduced inlet temperature. Additionally, the introduction of a porous medium as the SEU current collector in the steam chamber enhances heat transport within this chamber. The area specific resistance of the system determines the current density, enforcing an adaption of the area of the electrolyser to satisfy the target hydrogen production and energy efficiency. The resulting proposed SEU design and adapted operational parameters allow effective delivery of pressurized dry hydrogen for a wide range of conditions and applications.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells
dc.title.alternativeENEngelskEnglishThermo-fluid dynamics modelling of steam electrolysis in fully-assembled tubular high-temperature proton-conducting cells
dc.typeJournal article
dc.creator.authorCatalán-Martínez, D.
dc.creator.authorNavarrete, L.
dc.creator.authorTarach, M.
dc.creator.authorSantos-Blasco, J.
dc.creator.authorVøllestad, Einar
dc.creator.authorNorby, Truls
dc.creator.authorBudd, M.I.
dc.creator.authorVeenstra, P.
dc.creator.authorSerra, J.M.
cristin.unitcode185,15,12,52
cristin.unitnameFaststoff elektrokjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2045274
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International Journal of Hydrogen Energy&rft.volume=47&rft.spage=27787&rft.date=2022
dc.identifier.jtitleInternational Journal of Hydrogen Energy
dc.identifier.volume47
dc.identifier.issue65
dc.identifier.startpage27787
dc.identifier.endpage27799
dc.identifier.doihttps://doi.org/10.1016/j.ijhydene.2022.06.112
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0360-3199
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International