Hide metadata

dc.date.accessioned2013-03-12T08:15:11Z
dc.date.available2013-03-12T08:15:11Z
dc.date.issued2007en_US
dc.date.submitted2007-06-25en_US
dc.identifier.citationBøhagen, Frode. Modeling, Characterization and Design of Line-of-Sight Wireless MIMO Channels. Doktoravhandling, University of Oslo, 2007en_US
dc.identifier.urihttp://hdl.handle.net/10852/9739
dc.description.abstractThis doctoral thesis contains a collection of five papers preceded by an introduction. The papers investigate channel models for, design of, and performance analysis of wireless multiple-input multiple-output (MIMO) systems which are subject to a strong line-of-sight (LOS) channel component. MIMO technology is embraced as one of the key technologies for fulfilling the demand for increased throughput and improved quality of service (QoS) in future wireless applications. This technology can both be employed to increase reliability, through diversity schemes such as e.g. maximum ratio combining and Alamouti coding, or to increase the spectral efficiency by spatial multiplexing schemes such as e.g. eigenmode transmission and V-BLAST. The performance of a wireless MIMO system is heavily dependent on the condition of the channel matrix, in the sense that the channel matrix should be of high rank for the MIMO system to achieve good performance. When the channel is such that the major part of the received power at the receiver (Rx) is due to multipath, fulfilling the high rank criteria is dependent on low correlation between the different subchannels. On the other hand, if the dominant component at the Rx is the deterministic LOS component, fulfilling the high rank criteria becomes dependent on the design of the two antenna arrays employed. In this thesis we derive optimal antenna array designs for pure LOS channels with respect to mutual information (MI), when any combination of uniform linear arrays (ULAs) and uniform planar arrays (UPAs) are employed at the transmitter (Tx) and Rx. The important parameters with respect to design will be shown to be the antenna separation, antenna orientation, wavelength, transmission distance, and MIMO dimension. Moreover, we characterize the effects of these parameters deviating from their optimal values. The pure LOS channel matrix utilized is subsequently employed in a Ricean channel model also incorporating multipath, and performance is evaluated both analytically and numerically for different designs and multipath conditions. Furthermore, we investigate the performance of a possible future high frequency fixed wireless access (FWA) system based on the optimal design principle, to see how it works in a more realistic scenario. In general, the results show that a considerable gain is achieved if a design close to the optimal is possible for a MIMO system transmitting over a strong LOS channel. The thesis also contains an analysis of the difference between the spherical wave model (SWM) and the plane wave model (PWM). The investigation is performed for systems utilizing ULAs, and it results in a framework that can be employed when evaluating when to apply the true SWM, and when the more simple approximate PWM gives sufficient modeling accuracy. Based on the framework, we conclude that the SWM should for example be applied in some typical WLAN scenarios. Journal and conference contributions during PhD studies. During the PhD studies, the author has contributed to the following journal and conference publications:nor
dc.language.isonoben_US
dc.relation.haspart1. F. Bøhagen, P. Orten, and G. E. Øien, “Design of Capacity-Optimal High-Rank Line-of-Sight MIMO Channels,” IEEE Transactions on Wireless Communications, vol. 6, no. 4
dc.relation.haspart2. F. Bøhagen, P. Orten, and G. E. Øien, “On Spherical vs. Plane Wave Modeling of Line-of-Sight MIMO Channels,” conditionally accepted for publication in IEEE Transactions on Communications.
dc.relation.haspart3. F. Bøhagen, P. Orten, G. E. Øien, and S. de la Kethulle de Ryhove, “Exact Capacity Expressions for Dual-Branch Ricean MIMO Channels,” conditionally accepted for publication in IEEE Transactions on Communications.
dc.relation.haspart4. S. de la Kethulle de Ryhove, G. E. Øien, and F. Bøhagen, “On the Statistics and Spectral Efficiency of Dual-Branch MIMO Systems with Link Adaptation and Power Control,” submitted to IEEE Transactions on Vehicular Technology, November 2006.
dc.relation.haspart5. F. Bøhagen, P. Orten, and G. E. Øien, “Optimal Design of Uniform Planar Antenna Arrays for Strong Line-of-Sight MIMO Channels,” submitted to EURASIP Journal on Wireless Communications and Networking, November 2006.
dc.relation.haspart6. F. Bøhagen, P. Orten, and G. E. Øien, “On Spherical vs. Plane Wave Modeling of Line-of-Sight MIMO Channels,” in Proc. IEEE Global Communications Conference, San Francisco, USA, November 2006.
dc.relation.haspart7. F. Bøhagen, P. Orten, and G. E. Øien, “Modeling of Line-of-Sight 2x2 MIMO Channels: Spherical versus Plane Waves,” in Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, September 2006. Pages 1-5
dc.relation.haspart8. F. Bøhagen, P. Orten, and G. E. Øien, “Optimal Design of Uniform Planar Antenna Arrays for Strong Line-of-Sight MIMO Channels,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, July 2006. Pages 1-5
dc.relation.haspart9. F. Bøhagen, P. Orten, and G. E. Øien, “On the Shannon Capacity of Dual MIMO Systems in Ricean Fading,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, New York, USA, June 2005. Pages 96-100
dc.relation.haspart10. F. Bøhagen, P. Orten, and G. E. Øien, “Modeling and Analysis of a 40 GHz MIMO System for Fixed Wireless Access,” in Proc. IEEE Vehicular Technology Conference, Stockholm, Sweden, June 2005.
dc.relation.haspart11. S. de la Kethulle de Ryhove, Geir E. Øien, and Frode Bøhagen, “Subchannel SNR Distributions in Dual-Branch MIMO Systems,” in Proc. IEEE/ITG International Workshop on Smart Antennas, Duisburg, Germany, April 2005.
dc.relation.haspart12. F. Bøhagen, P. Orten, and G. E. Øien, “Construction and Capacity Analysis of High-Rank Line-of-Sight MIMO Channels,” in Proc. IEEE Wireless Communications and Networking Conference, New Orleans, USA, March 2005. Pages 1691-1695, Vol. 3
dc.titleModeling, Characterization and Design of Line-of-Sight Wireless MIMO Channelsen_US
dc.typeDoctoral thesisen_US
dc.date.updated2012-09-17en_US
dc.creator.authorBøhagen, Frodeen_US
dc.subject.nsiVDP::420en_US
cristin.unitcode150500en_US
cristin.unitnameInformatikken_US
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.au=Bøhagen, Frode&rft.title=Modeling, Characterization and Design of Line-of-Sight Wireless MIMO Channels&rft.inst=University of Oslo&rft.date=2007&rft.degree=Doktoravhandlingen_US
dc.identifier.urnURN:NBN:no-15080en_US
dc.type.documentDoktoravhandlingen_US
dc.identifier.duo62950en_US
dc.contributor.supervisorPå Orten og Geir E. Øienen_US
dc.identifier.bibsys070896127en_US
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/9739/1/DUO_618_Bohagen.pdf


Files in this item

Appears in the following Collection

Hide metadata