Hide metadata

dc.date.accessioned2022-09-15T14:03:37Z
dc.date.available2022-09-15T14:03:37Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/10852/96620
dc.description.abstractCoherent swirling bodies of water; mesoscale (10-100 km) vortices, are an essential part of the general ocean circulation. Mesoscale vortices are abundant everywhere in the World Ocean and are vital in upholding equilibrium balances that govern the global circulation and thus also the climate. In order to obtain a better understanding of the general circulation in the global ocean, there is a need of more insight into vortex life cycles and impacts, such as their formation, spatial structure, distribution, and interactions with neighboring vortices and with the ambient environment. Gaining more knowledge of the mesoscale vortex field is not only crucial for our present-day understanding of the circulation, but also for future predictions of climate. Studying the mesoscale vortex field is challenging in the polar regions since vortex length scales significantly decrease with latitude. The small length scales make them both harder to observe and to model. In this thesis, simplified theory and idealized and realistic high-resolution modeling is combined to gain insight the mesoscale vortex field in a climate-sensitive high latitude region, namely the Subarctic Seas. A unique, long-lived high pressure system situated in the Lofoten Basin is specifically examined. How this storm has kept intact for perhaps over 100 years has been puzzling, and this thesis shows a direct link to the process responsible for its regeneration.en_US
dc.language.isoenen_US
dc.relation.haspartPaper I: Marta Trodahl and Pål Erik Isachsen, (2018), "Topographic influence on baroclinic instability and the mesoscale eddy field in the northern North Atlantic Ocean and the Nordic Seas", Journal of Physical Oceanography. doi: 10.1175/JPO-D-17-0220.1, 2018. The article is included in the thesis. Also available at: https://doi.org/10.1175/JPO-D-17-0220.1
dc.relation.haspartPaper II: Marta Trodahl, Pål Erik Isachsen, Jonathan M. Lilly, Johan Nilsson, and Nils Melsom Kristensen, (2020), "The regeneration of the Lofoten Vortex through vertical alignment", Journal of Physical Oceanography. doi: 10.1175/JPO-D-20-0029.1, 2020. The article is included in the thesis. Also available at: https://doi.org/10.1175/JPO-D-20-0029.1
dc.relation.haspartPaper III: Marta Trodahl, LaCasce, J. H, (submitted: May 2022), "Stable surface anticyclones in basins", Journal of Physical Oceanography. To be published. The paper is not available in DUO awaiting publishing.
dc.relation.urihttps://doi.org/10.1175/JPO-D-17-0220.1
dc.relation.urihttps://doi.org/10.1175/JPO-D-20-0029.1
dc.titleVortices in the Subarctic Seas and their interactions with bottom topographyen_US
dc.typeDoctoral thesisen_US
dc.creator.authorTrodahl, Marta
dc.type.documentDoktoravhandlingen_US


Files in this item

Appears in the following Collection

Hide metadata