Hide metadata

dc.date.accessioned2022-09-05T15:54:38Z
dc.date.available2022-09-05T15:54:38Z
dc.date.created2022-08-22T10:25:39Z
dc.date.issued2022
dc.identifier.citationRennie, Thomas J. Harper, Stuart E. Dickinson, Clive Philip, Liju Cleary, Kieran A. Bond, Richard J. Borowska, Jowita Breysse, Patrick C. Catha, Morgan Cepeda-Arroita, Roke Chung, Dongwoo T. Church, Sarah E. Dunne, Delaney A. Eriksen, Hans Kristian Kamfjord Foss, Marie Kristine Gaier, Todd Gundersen, Joshua Ott Harris, Andrew I. Hensley, Brandon Hobbs, Richard Ihle, Håvard Tveit Lamb, James W. Lawrence, Charles R. Lunde, Jonas Gahr Sturtzel Paladini, Roberta Pearson, Timothy J. Rasmussen, Maren Readhead, Anthony C. S. Stutzer, Nils-Ole Watts, Duncan Wehus, Ingunn Kathrine Woody, David P. . COMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey. The Astrophysical Journal (ApJ). 2022, 933(2)
dc.identifier.urihttp://hdl.handle.net/10852/96046
dc.description.abstractWe present early results from the CO Mapping Array Project (COMAP) Galactic Plane Survey conducted between 2019 June and 2021 April, spanning 20° < ℓ < 40° in Galactic longitude and ∣b∣ < 1fdg5 in Galactic latitude with an angular resolution of 4farcm5. We present initial results from the first part of the survey, including the diffuse emission and spectral energy distributions of H ii regions and supernova remnants (SNRs). Using low- and high-frequency surveys to constrain free–free and thermal dust emission contributions, we find evidence of excess flux density at 30 GHz in six regions, which we interpret as anomalous microwave emission. Furthermore we model ultracompact H ii contributions using data from the 5 GHz CORNISH catalog and reject these as the cause of the 30 GHz excess. Six known SNRs are detected at 30 GHz, and we measure spectral indices consistent with the literature or show evidence of steepening. The flux density of the SNR W44 at 30 GHz is consistent with a power-law extrapolation from lower frequencies with no indication of spectral steepening in contrast with recent results from the Sardinia Radio Telescope. We also extract five hydrogen radio recombination lines (RRLs) to map the warm ionized gas, which can be used to estimate electron temperatures or to constrain continuum free–free emission. The full COMAP Galactic Plane Survey, to be released in 2023/2024, will span ℓ ∼ 20°–220° and will be the first large-scale radio continuum and RRL survey at 30 GHz with 4farcm5 resolution.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleCOMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey
dc.title.alternativeENEngelskEnglishCOMAP Early Science. VI. A First Look at the COMAP Galactic Plane Survey
dc.typeJournal article
dc.creator.authorRennie, Thomas J.
dc.creator.authorHarper, Stuart E.
dc.creator.authorDickinson, Clive
dc.creator.authorPhilip, Liju
dc.creator.authorCleary, Kieran A.
dc.creator.authorBond, Richard J.
dc.creator.authorBorowska, Jowita
dc.creator.authorBreysse, Patrick C.
dc.creator.authorCatha, Morgan
dc.creator.authorCepeda-Arroita, Roke
dc.creator.authorChung, Dongwoo T.
dc.creator.authorChurch, Sarah E.
dc.creator.authorDunne, Delaney A.
dc.creator.authorEriksen, Hans Kristian Kamfjord
dc.creator.authorFoss, Marie Kristine
dc.creator.authorGaier, Todd
dc.creator.authorGundersen, Joshua Ott
dc.creator.authorHarris, Andrew I.
dc.creator.authorHensley, Brandon
dc.creator.authorHobbs, Richard
dc.creator.authorIhle, Håvard Tveit
dc.creator.authorLamb, James W.
dc.creator.authorLawrence, Charles R.
dc.creator.authorLunde, Jonas Gahr Sturtzel
dc.creator.authorPaladini, Roberta
dc.creator.authorPearson, Timothy J.
dc.creator.authorRasmussen, Maren
dc.creator.authorReadhead, Anthony C. S.
dc.creator.authorStutzer, Nils-Ole
dc.creator.authorWatts, Duncan
dc.creator.authorWehus, Ingunn Kathrine
dc.creator.authorWoody, David P.
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2044854
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=933&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume933
dc.identifier.issue2
dc.identifier.pagecount22
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac63c8
dc.identifier.urnURN:NBN:no-98547
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/96046/1/Rennie_2022_ApJ_933_187.pdf
dc.type.versionPublishedVersion
cristin.articleid187


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International