Hide metadata

dc.date.accessioned2022-08-31T15:06:21Z
dc.date.available2022-08-31T15:06:21Z
dc.date.created2022-08-22T14:20:18Z
dc.date.issued2022
dc.identifier.citationLiberty, Lee M. Yelton, Jonathan Skurtveit, Elin Braathen, Alvar Midtkandal, Ivar Evans, James P. . Regolith and host rock influences on CO2 leakage: Active source seismic profiling across the Little Grand Wash fault, Utah. International Journal of Greenhouse Gas Control. 2022, 119, 1-14
dc.identifier.urihttp://hdl.handle.net/10852/95881
dc.description.abstractUnderstanding carbon dioxide (CO2) reservoir to surface migration is crucial to successful carbon capture and sequestration approaches; especially fault/reservoir interactions under injection pressure. Through seismic imaging, we explore regolith and shallow stratigraphy across the Little Grand Wash fault. The presence of natural CO2 seeps, travertine and tufa deposits confirm modern and ancient fault-controlled CO2 leakage. We consider this an analogue for a long-failed sequestration site. We estimate bulk porosity and fracture density for host rock, regolith, and fault zone from petrophysical relationships. When combined with existing geochemical and geological data, we characterize a 60 m wide damage zone that represents the primary surface delivery channel for CO2 originating from reservoir depths. Within this damage zone, low seismic velocities suggest sediments have formed through host rock chemical dissolution or mechanical weathering. In contrast, velocities within the adjacent host rock are consistent with low fracture density clastic rocks. We measure anomalously high seismic velocities within the fault zone along one profile that best represents a sealed (cemented/plugged) low permeability, relic flow channel. This suggests that shallow fault zone permeability varies along strike. While regional stress changes may account for decadal- to millennial-scale changes in CO2 pathways, we speculate that the total fluid pressure has locally reduced the fault's minimum horizontal effective stress; thereby producing both low- and high-permeability fault segments that either block or promote fluid migration. Studying CO2 migration in this system can inform potential risks to future sequestration projects and guide monitoring efforts.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleRegolith and host rock influences on CO2 leakage: Active source seismic profiling across the Little Grand Wash fault, Utah
dc.title.alternativeENEngelskEnglishRegolith and host rock influences on CO2 leakage: Active source seismic profiling across the Little Grand Wash fault, Utah
dc.typeJournal article
dc.creator.authorLiberty, Lee M.
dc.creator.authorYelton, Jonathan
dc.creator.authorSkurtveit, Elin
dc.creator.authorBraathen, Alvar
dc.creator.authorMidtkandal, Ivar
dc.creator.authorEvans, James P.
cristin.unitcode185,15,22,50
cristin.unitnameSeksjon for geologi og geofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2044989
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International Journal of Greenhouse Gas Control&rft.volume=119&rft.spage=1&rft.date=2022
dc.identifier.jtitleInternational Journal of Greenhouse Gas Control
dc.identifier.volume119
dc.identifier.doihttps://doi.org/10.1016/j.ijggc.2022.103742
dc.identifier.urnURN:NBN:no-98395
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1750-5836
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/95881/1/Liberty_etal%25282022%2529.pdf
dc.type.versionPublishedVersion
cristin.articleid103742
dc.relation.projectNFR/295061


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International