Hide metadata

dc.date.accessioned2022-08-17T15:49:48Z
dc.date.available2022-08-17T15:49:48Z
dc.date.created2022-03-28T01:29:19Z
dc.date.issued2022
dc.identifier.citationBazioti, Kalliopi Løvvik, Ole Martin Poulia, Anthoula Almeida Carvalho, Patricia S. Azar, Amin Mikheenko, Pavlo Diplas, Spyridon Gunnæs, Anette Eleonora . Probing the structural evolution and its impact on magnetic properties of FeCoNi(AlMn)x high-entropy alloy at the nanoscale. Journal of Alloys and Compounds. 2022, 910, 1-12
dc.identifier.urihttp://hdl.handle.net/10852/95035
dc.description.abstractWe report the first nanoscale investigation of FeCoNi(AlMn)x high-entropy alloys (HEAs) processed by laser metal deposition. The structural evolution of the alloy upon chemical composition variation (0.2 ≤ x ≤ 1.5) was investigated by combining imaging and spectroscopies in (scanning) transmission electron microscopy (S)TEM with density functional theory (DFT). A gradual change from a face-centered cubic (FCC) towards an ordered full-Heusler (L21) phase by increasing the Al and Mn contents was observed. Direct imaging and atomic-scale calculations revealed a nanoscale interplay between B2 and L21 ordered structures for x = 1.5, wherein the latter, Al and Mn occupy two different Wyckoff sites. By decreasing x, the FCC phase dominates exhibiting intense phase separation tendency, ordering phenomena, and nano-precipitation. Although not chemically discriminated, plasmon-peak splitting in low-loss electron energy loss spectra revealed the presence of two valence electron densities within the FCC phase. Lorentz TEM showed that the ordered nano-precipitates and nano-sized grains with a structure based on a tripled FCC unit cell are pinning-sites for magnetic domain walls and dislocations. All alloy compositions exhibited soft-magnetic behavior with coercivity (Hc) values< 1000 A/m. The FeCoNi(AlMn)1.5 alloy with L21/B2 nanostructure showed the highest magnetization (Ms) with relatively low Hc, attributed to the large magnetic moment of Mn and the synergistic effect of Mn-Al according to DFT, whilst ordering does not impose a negative effect. Phase separation trends within the FCC phase seem to decrease the Ms however, the overall impact on the magnetic behavior is not intense, opening up for new avenues for tuning FeCoNiAlMn properties through chemically-designed phase decomposition regimes.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleProbing the structural evolution and its impact on magnetic properties of FeCoNi(AlMn)x high-entropy alloy at the nanoscale
dc.title.alternativeENEngelskEnglishProbing the structural evolution and its impact on magnetic properties of FeCoNi(AlMn)x high-entropy alloy at the nanoscale
dc.typeJournal article
dc.creator.authorBazioti, Kalliopi
dc.creator.authorLøvvik, Ole Martin
dc.creator.authorPoulia, Anthoula
dc.creator.authorAlmeida Carvalho, Patricia
dc.creator.authorS. Azar, Amin
dc.creator.authorMikheenko, Pavlo
dc.creator.authorDiplas, Spyridon
dc.creator.authorGunnæs, Anette Eleonora
cristin.unitcode185,15,17,20
cristin.unitnameSMN fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2012851
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Alloys and Compounds&rft.volume=910&rft.spage=1&rft.date=2022
dc.identifier.jtitleJournal of Alloys and Compounds
dc.identifier.volume910
dc.identifier.doihttps://doi.org/10.1016/j.jallcom.2022.164724
dc.identifier.urnURN:NBN:no-97555
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0925-8388
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/95035/1/Bazioti_etal_2022.pdf
dc.type.versionPublishedVersion
cristin.articleid164724
dc.relation.projectNFR/nn2615k
dc.relation.projectNFR/197405
dc.relation.projectNFR/287979


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International