Hide metadata

dc.date.accessioned2022-08-15T15:08:46Z
dc.date.available2022-08-15T15:08:46Z
dc.date.created2022-05-06T13:37:21Z
dc.date.issued2022
dc.identifier.citationBrune, William H. Miller, David O. Thames, Alexander B. Brosius, Alexandra L. Barletta, Barbara Blake, Donald R. Blake, Nicola J. Chen, Gao Choi, Yonghoon Crawford, James H. Digangi, Joshua P. Diskin, Glenn Fried, Alan Hall, Samuel R. Hanisco, Thomas F. Huey, Greg L. Hughes, Stacey C. Kim, Michelle Meinardi, Simone Montzka, Denise D. Pusede, Sally E. Schroeder, Jason R. Teng, Alex Tanner, David J. Ullmann, Kirk Walega, James Weinheimer, Andrew Wisthaler, Armin Wennberg, Paul O. . Observations of atmospheric oxidation and ozone production in South Korea. Atmospheric Environment. 2022, 269
dc.identifier.urihttp://hdl.handle.net/10852/94971
dc.description.abstractSouth Korea routinely experiences poor air quality with ozone and small particles exceeding air quality standards. To build a better understanding of this problem, in 2016, the KORea-United States cooperative Air Quality (KORUS-AQ) study collected surface and airborne measurements of many chemical species, including the reactive gases hydroxyl (OH) and hydroperpoxyl (HO2). Several different results are reported here. First, OH and HO2 measured on the NASA DC-8 agree to within uncertainties with values calculated by two different box models, both in statistical comparisons and as a function of altitude from the surface to 8 km. These comparisons show substantial scatter, likely due to both variability in instrument performance and the difficulty in interpolating measurements made with frequencies different from those of the model time step. Second, OH and HO2 calculated by a model including HO2 uptake on aerosol particles in the chemical mechanism are inconsistent with observations. Third, in the planetary boundary layer over both ocean and land, measured and model-calculated OH reactivity are sometimes different, and this missing OH reactivity, which is as much as ∼4 s−1, increased from April to June and originated primarily from the Korean peninsula. Fourth, repeated missed approaches at the Seoul Air Base during several days show that the changes in the sum of ozone and nitrogen dioxide are consistent with ozone production rates calculated from HO2 either observed or modeled by the Langley Research Center model.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleObservations of atmospheric oxidation and ozone production in South Korea
dc.title.alternativeENEngelskEnglishObservations of atmospheric oxidation and ozone production in South Korea
dc.typeJournal article
dc.creator.authorBrune, William H.
dc.creator.authorMiller, David O.
dc.creator.authorThames, Alexander B.
dc.creator.authorBrosius, Alexandra L.
dc.creator.authorBarletta, Barbara
dc.creator.authorBlake, Donald R.
dc.creator.authorBlake, Nicola J.
dc.creator.authorChen, Gao
dc.creator.authorChoi, Yonghoon
dc.creator.authorCrawford, James H.
dc.creator.authorDigangi, Joshua P.
dc.creator.authorDiskin, Glenn
dc.creator.authorFried, Alan
dc.creator.authorHall, Samuel R.
dc.creator.authorHanisco, Thomas F.
dc.creator.authorHuey, Greg L.
dc.creator.authorHughes, Stacey C.
dc.creator.authorKim, Michelle
dc.creator.authorMeinardi, Simone
dc.creator.authorMontzka, Denise D.
dc.creator.authorPusede, Sally E.
dc.creator.authorSchroeder, Jason R.
dc.creator.authorTeng, Alex
dc.creator.authorTanner, David J.
dc.creator.authorUllmann, Kirk
dc.creator.authorWalega, James
dc.creator.authorWeinheimer, Andrew
dc.creator.authorWisthaler, Armin
dc.creator.authorWennberg, Paul O.
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2022129
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Environment&rft.volume=269&rft.spage=&rft.date=2022
dc.identifier.jtitleAtmospheric Environment
dc.identifier.volume269
dc.identifier.pagecount0
dc.identifier.doihttps://doi.org/10.1016/j.atmosenv.2021.118854
dc.identifier.urnURN:NBN:no-97501
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1352-2310
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/94971/1/1-s2.0-S1352231021006762-main.pdf
dc.type.versionPublishedVersion
cristin.articleid118854
dc.relation.projectNASA/NNX15AT99G
dc.relation.projectNASA/80NSSC19K1590
dc.relation.projectNASA/NNX15AT82G


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International