Hide metadata

dc.date.accessioned2022-08-10T15:39:13Z
dc.date.available2022-08-10T15:39:13Z
dc.date.created2022-08-08T13:28:11Z
dc.date.issued2022
dc.identifier.citationPogliano, Francesco Larsen, Ann-Cecilie Markova, Maria Bello Garrote, Frank Leonel Bjørøen, M.M. Eriksen, Tomas Kvalheim Gjestvang, Dorthea Görgen, Andreas Guttormsen, Magne Sveen Li, Kevin Ching Wei Matthews, Eric Francis Paulsen, Wanja Pedersen, Line Gaard Siem, Sunniva Storebakken, Tellef Tornyi, Tamas Gabor Vevik, Julian Ersland . Indirect measurement of the (n,γ)127Sb cross section. Physical Review C. 2022, 106(015804)
dc.identifier.urihttp://hdl.handle.net/10852/94930
dc.description.abstractNuclei in the 135I region have been identified as being a possible bottleneck for the i process. Here we present an indirect measurement for the Maxwellian-averaged cross section of 126Sb(n,γ). The nuclear level density and the γ-ray strength function of 127Sb have been extracted from 124Sn(α,pγ)127Sb data using the Oslo method. The level density in the low-excitation-energy region agrees well with known discrete levels, and the higher-excitation-energy region follows an exponential curve compatible with the constant-temperature model. The strength function between Eγ≈1.5–8.0 MeV presents several features, such as an upbend and a possibly double-peaked pygmy-like structure. None of the theoretical models included in the nuclear reaction code talys seem to reproduce the experimental data. The Maxwellian-averaged cross section for the 126Sb(n,γ)127Sb reaction has been experimentally constrained by using our level-density and strength-function data as input to talys. We observe a good agreement with the jina reaclib, tendl, and bruslib libraries, while the endf/b-viii.0 library predicts a significantly higher rate than our results.
dc.languageEN
dc.publisherAmerican Physical Society
dc.titleIndirect measurement of the (n,γ)127Sb cross section
dc.title.alternativeENEngelskEnglishIndirect measurement of the (n,γ)127Sb cross section
dc.typeJournal article
dc.creator.authorPogliano, Francesco
dc.creator.authorLarsen, Ann-Cecilie
dc.creator.authorMarkova, Maria
dc.creator.authorBello Garrote, Frank Leonel
dc.creator.authorBjørøen, M.M.
dc.creator.authorEriksen, Tomas Kvalheim
dc.creator.authorGjestvang, Dorthea
dc.creator.authorGörgen, Andreas
dc.creator.authorGuttormsen, Magne Sveen
dc.creator.authorLi, Kevin Ching Wei
dc.creator.authorMatthews, Eric Francis
dc.creator.authorPaulsen, Wanja
dc.creator.authorPedersen, Line Gaard
dc.creator.authorSiem, Sunniva
dc.creator.authorStorebakken, Tellef
dc.creator.authorTornyi, Tamas Gabor
dc.creator.authorVevik, Julian Ersland
cristin.unitcode185,15,4,20
cristin.unitnameKjerne- og energifysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2041732
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical Review C&rft.volume=106&rft.spage=&rft.date=2022
dc.identifier.jtitlePhysical Review C
dc.identifier.volume106
dc.identifier.issue1
dc.identifier.pagecount11
dc.identifier.doihttps://doi.org/10.1103/PhysRevC.106.015804
dc.identifier.urnURN:NBN:no-97455
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2469-9985
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/94930/1/PhysRevC.106.015804.pdf
dc.type.versionPublishedVersion
cristin.articleid015804


Files in this item

Appears in the following Collection

Hide metadata