Hide metadata

dc.date.accessioned2022-08-05T17:09:03Z
dc.date.available2022-08-05T17:09:03Z
dc.date.created2022-07-26T23:58:10Z
dc.date.issued2022
dc.identifier.citationNooraiepour, Mohammad . Clay Mineral Type and Content Control Properties of Fine-Grained CO2 Caprocks—Laboratory Insights from Strongly Swelling and Non-Swelling Clay–Quartz Mixtures. Energies. 2022, 15(14)
dc.identifier.urihttp://hdl.handle.net/10852/94826
dc.description.abstractUnderstanding and predicting sealing characteristics and containment efficiency as a function of burial depth across sedimentary basins is a prerequisite for safe and secure subsurface storage. Instead of estimators and empirical relationships, this study aimed to delineate data-driven variability domains for non-cemented fine-grained clastic caprocks. Constant rate-of-strain uniaxial compression experiments were performed to measure changes in properties of brine-saturated quartz–clay mixtures. The binary mixtures were prepared by mixing quartz with strongly swelling (smectite) and non-swelling (kaolinite) clays representing end-member clay mineral characteristics. The primary objective was to evaluate the evolution of mudstone properties in the first 2.5 km of burial depth before chemical compaction and cementation. By conducting systematic laboratory tests, variability domains, normal compaction trends, and the boundaries in which characteristics of fine-grained argillaceous caprocks may vary were identified, quantified, and mathematically described. The results showed distinct domains of properties, where kaolinite-rich samples showed higher compressibility, lower total porosity, higher vertical permeability, and higher Vp and Vs. Two discrepancies were discovered in the literature and resolved regarding the compaction of pure kaolinite and the ultimate lowest porosity for quartz–clay mixtures. The present experimental study can provide inputs for numerical simulation and geological modeling of candidate CO2 storage sites.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleClay Mineral Type and Content Control Properties of Fine-Grained CO2 Caprocks—Laboratory Insights from Strongly Swelling and Non-Swelling Clay–Quartz Mixtures
dc.title.alternativeENEngelskEnglishClay Mineral Type and Content Control Properties of Fine-Grained CO2 Caprocks—Laboratory Insights from Strongly Swelling and Non-Swelling Clay–Quartz Mixtures
dc.typeJournal article
dc.creator.authorNooraiepour, Mohammad
cristin.unitcode185,15,22,50
cristin.unitnameSeksjon for geologi og geofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2039718
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energies&rft.volume=15&rft.spage=&rft.date=2022
dc.identifier.jtitleEnergies
dc.identifier.volume15
dc.identifier.issue14
dc.identifier.doihttps://doi.org/10.3390/en15145149
dc.identifier.urnURN:NBN:no-97356
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1996-1073
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/94826/1/Nooraiepour.2022.Energies%2B%25281%2529.pdf
dc.type.versionPublishedVersion
cristin.articleid5149
dc.relation.projectEEA/690582
dc.relation.projectEEANORWAYGRANTS/690582


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International