Hide metadata

dc.date.accessioned2022-06-13T15:21:34Z
dc.date.available2022-06-13T15:21:34Z
dc.date.created2022-05-03T09:05:14Z
dc.date.issued2022
dc.identifier.citationShen, Zexi Zhang, Qiang Singh, Vijay P. Pokhrel, Yadu Liu, Jianping Xu, Chong-Yu Wu, Wenhuan . Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia. Nature Communications. 2022, 13(1), 1-10
dc.identifier.urihttp://hdl.handle.net/10852/94359
dc.description.abstractAbstract Eurasia, home to ~70% of global population, is characterized by (semi-)arid climate. Water scarcity in the mid-latitude Eurasia (MLE) has been exacerbated by a consistent decline in terrestrial water storage (TWS), attributed primarily to human activities. However, the atmospheric mechanisms behind such TWS decline remain unclear. Here, we investigate teleconnections between drying in low-latitude North Atlantic Ocean (LNATO) and TWS depletions across MLE. We elucidate mechanistic linkages and detecte high correlations between decreased TWS in MLE and the decreased precipitation-minus-evapotranspiration (PME) in LNATO. TWS in MLE declines by ~257% during 2003-2017 due to northeastward propagation of PME deficit following two distinct seasonal landfalling routes during January-May and June-January. The same mechanism reduces TWS during 2031-2050 by ~107% and ~447% under scenarios SSP245 and SSP585, respectively. Our findings highlight the risk of increased future water scarcity across MLE caused by large-scale climatic drivers, compounding the impacts of human activities.
dc.languageEN
dc.publisherNature Portfolio
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDrying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia
dc.title.alternativeENEngelskEnglishDrying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia
dc.typeJournal article
dc.creator.authorShen, Zexi
dc.creator.authorZhang, Qiang
dc.creator.authorSingh, Vijay P.
dc.creator.authorPokhrel, Yadu
dc.creator.authorLiu, Jianping
dc.creator.authorXu, Chong-Yu
dc.creator.authorWu, Wenhuan
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2020840
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature Communications&rft.volume=13&rft.spage=1&rft.date=2022
dc.identifier.jtitleNature Communications
dc.identifier.volume13
dc.identifier.issue1
dc.identifier.doihttps://doi.org/10.1038/s41467-022-29544-6
dc.identifier.urnURN:NBN:no-96905
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2041-1723
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/94359/1/NatureC_1.pdf
dc.type.versionPublishedVersion
cristin.articleid1849


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International