Hide metadata

dc.date.accessioned2022-06-10T15:40:39Z
dc.date.available2022-06-10T15:40:39Z
dc.date.created2022-06-02T14:15:08Z
dc.date.issued2022
dc.identifier.citationSilva, Suzana S. A. Murabito, Mariarita Jafarzadeh, Shahin Stangliani, Marco Verth, Gary Ballai, Istvan Fedun, Viktor . The Importance of Horizontal Poynting Flux in the Solar Photosphere. The Astrophysical Journal (ApJ). 2022, 927(2)
dc.identifier.urihttp://hdl.handle.net/10852/94346
dc.description.abstractThe electromagnetic energy flux in the lower atmosphere of the Sun is a key tool to describe the energy balance of the solar atmosphere. Current investigations on energy flux in the solar atmosphere focus primarily on the vertical electromagnetic flux through the photosphere, ignoring the Poynting flux in other directions and its possible contributions to local heating. Based on a realistic Bifrost simulation of a quiet-Sun (coronal hole) atmosphere, we find that the total electromagnetic energy flux in the photosphere occurs mainly parallel to the photosphere, concentrating in small regions along intergranular lanes. Thereby, it was possible to define a proxy for this energy flux based on only variables that can be promptly retrieved from observations, namely, horizontal velocities of the small-scale magnetic elements and their longitudinal magnetic flux. Our proxy accurately describes the actual Poynting flux distribution in the simulations, with the electromagnetic energy flux reaching 1010 erg cm−2 s−1. To validate our findings, we extended the analysis to Sunrise/IMaX data. First, we show that Bifrost realistically describes photospheric quiet-Sun regions, as the simulation presents similar distributions for line-of-sight magnetic flux and horizontal velocity field. Second, we found very similar horizontal Poynting flux proxy distributions for the simulated photosphere and observational data. Our results also indicate that the horizontal Poynting flux in the observations is considerably larger than the vertical electromagnetic flux from previous observational estimates. Therefore, our analysis confirms that the electromagnetic energy flux in the photosphere is mainly horizontal and is most intense in localized regions along intergranular lanes.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Importance of Horizontal Poynting Flux in the Solar Photosphere
dc.title.alternativeENEngelskEnglishThe Importance of Horizontal Poynting Flux in the Solar Photosphere
dc.typeJournal article
dc.creator.authorSilva, Suzana S. A.
dc.creator.authorMurabito, Mariarita
dc.creator.authorJafarzadeh, Shahin
dc.creator.authorStangliani, Marco
dc.creator.authorVerth, Gary
dc.creator.authorBallai, Istvan
dc.creator.authorFedun, Viktor
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2029129
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=927&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume927
dc.identifier.issue2
dc.identifier.pagecount10
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac4601
dc.identifier.urnURN:NBN:no-96885
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/94346/1/Silva_2022_ApJ_927_146.pdf
dc.type.versionPublishedVersion
cristin.articleid146
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International