Hide metadata

dc.date.accessioned2022-05-04T15:05:52Z
dc.date.available2022-05-04T15:05:52Z
dc.date.created2022-05-03T11:51:41Z
dc.date.issued2022
dc.identifier.citationTamfal, Tomas Mayer, Lucio Quinn, Thomas R. Babul, Arif Madau, Piero Capelo, Pedro R. Shen, Sijing Staub, Marius . The Dawn of Disk Formation in a Milky Way-sized Galaxy Halo: Thin Stellar Disks at z > 4. The Astrophysical Journal (ApJ). 2022, 928(2)
dc.identifier.urihttp://hdl.handle.net/10852/93872
dc.description.abstractWe present results from GigaEris, a cosmological, N-body hydrodynamical "zoom-in" simulation of the formation of a Milky Way-sized galaxy halo with unprecedented resolution, encompassing of order a billion particles within the refined region. The simulation employs a modern implementation of smoothed-particle hydrodynamics, including metal-line cooling and metal and thermal diffusion. We focus on the early assembly of the galaxy, down to redshift z = 4.4. The simulated galaxy has properties consistent with extrapolations of the main sequence of star-forming galaxies to higher redshifts and levels off to a star formation rate of ∼60 M⊙ yr−1 at z = 4.4. A compact, thin rotating stellar disk with properties analogous to those of low-redshift systems arises already at z ∼ 8. The galaxy rapidly develops a multi-component structure, and the disk, at least at these early stages, does not grow "upside-down" as often reported in the literature. Rather, at any given time, newly born stars contribute to sustain a thin disk. The kinematics reflect the early, ubiquitous presence of a thin disk, as a stellar disk component with vϕ/σR larger than unity is already present at z ∼ 9–10. Our results suggest that high-resolution spectro-photometric observations of very high-redshift galaxies should find thin rotating disks, consistent with the recent discovery of cold rotating gas disks by ALMA. Finally, we present synthetic images for the James Webb Space Telescope NIRCam camera, showing how the early disk would be easily detectable already at those early times.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Dawn of Disk Formation in a Milky Way-sized Galaxy Halo: Thin Stellar Disks at z > 4
dc.title.alternativeENEngelskEnglishThe Dawn of Disk Formation in a Milky Way-sized Galaxy Halo: Thin Stellar Disks at z > 4
dc.typeJournal article
dc.creator.authorTamfal, Tomas
dc.creator.authorMayer, Lucio
dc.creator.authorQuinn, Thomas R.
dc.creator.authorBabul, Arif
dc.creator.authorMadau, Piero
dc.creator.authorCapelo, Pedro R.
dc.creator.authorShen, Sijing
dc.creator.authorStaub, Marius
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin2020911
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The Astrophysical Journal (ApJ)&rft.volume=928&rft.spage=&rft.date=2022
dc.identifier.jtitleThe Astrophysical Journal (ApJ)
dc.identifier.volume928
dc.identifier.issue2
dc.identifier.pagecount15
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac558e
dc.identifier.urnURN:NBN:no-96426
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-637X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/93872/1/Tamfal_2022_ApJ_928_106.pdf
dc.type.versionPublishedVersion
cristin.articleid106


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International