Hide metadata

dc.date.accessioned2022-03-31T15:34:22Z
dc.date.available2022-03-31T15:34:22Z
dc.date.created2022-01-12T14:55:10Z
dc.date.issued2021
dc.identifier.citationBlichner, Sara Marie Sporre, Moa Kristina Berntsen, Terje Koren . Reduced effective radiative forcing from cloud–aerosol interactions (ERFaci) with improved treatment of early aerosol growth in an Earth system model. Atmospheric Chemistry and Physics (ACP). 2021, 21(23), 17243-17265
dc.identifier.urihttp://hdl.handle.net/10852/93133
dc.description.abstractHistorically, aerosols of anthropogenic origin have offset some of the warming from increased atmospheric greenhouse gas concentrations. The strength of this negative aerosol forcing, however, is highly uncertain – especially the part originating from cloud–aerosol interactions. An important part of this uncertainty originates from our lack of knowledge about pre-industrial aerosols and how many of these would have acted as cloud condensation nuclei (CCN). In order to simulate CCN concentrations in models, we must adequately model secondary aerosols, including new particle formation (NPF) and early growth, which contributes a large part of atmospheric CCN. In this study, we investigate the effective radiative forcing (ERF) from cloud–aerosol interactions (ERFaci) with an improved treatment of early particle growth, as presented in Blichner et al. (2021). We compare the improved scheme to the default scheme, OsloAero, which are both embedded in the atmospheric component of the Norwegian Earth System Model v2 (NorESM2). The improved scheme, OsloAeroSec, includes a sectional scheme that treats the growth of particles from 5–39.6 nm in diameter, which thereafter inputs the particles to the smallest mode in the pre-existing modal aerosol scheme. The default scheme parameterizes the growth of particles from nucleation up to the smallest mode, a process that can take several hours. The explicit treatment of early growth in OsloAeroSec, on the other hand, captures the changes in atmospheric conditions during this growth time in terms of air mass mixing, transport, and condensation and coagulation. We find that the ERFaci with the sectional scheme is −1.16 W m−2, which is 0.13 W m−2 weaker compared to the default scheme. This reduction originates from OsloAeroSec producing more particles than the default scheme in pristine, low-aerosol-concentration areas and fewer NPF particles in high-aerosol areas. We find, perhaps surprisingly, that NPF inhibits cloud droplet activation in polluted and/or high-aerosol-concentration regions because the NPF particles increase the condensation sink and reduce the growth of the larger particles which may otherwise activate. This means that in these high-aerosol regions, the model with the lowest NPF – OsloAeroSec – will have the highest cloud droplet activation and thus more reflective clouds. In pristine and/or low-aerosol regions, however, NPF enhances cloud droplet activation because the NPF particles themselves tend to activate. Lastly, we find that sulfate emissions in the present-day simulations increase the hygroscopicity of secondary aerosols compared to pre-industrial simulations. This makes NPF particles more relevant for cloud droplet activation in the present day than the pre-industrial atmosphere because increased hygroscopicity means they can activate at smaller sizes.
dc.languageEN
dc.publisherCopernicus GmbH
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleReduced effective radiative forcing from cloud–aerosol interactions (ERFaci) with improved treatment of early aerosol growth in an Earth system model
dc.typeJournal article
dc.creator.authorBlichner, Sara Marie
dc.creator.authorSporre, Moa Kristina
dc.creator.authorBerntsen, Terje Koren
cristin.unitcode185,15,32,0
cristin.unitnameSenter for biogeokjemi i Antropocen
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1979632
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Atmospheric Chemistry and Physics (ACP)&rft.volume=21&rft.spage=17243&rft.date=2021
dc.identifier.jtitleAtmospheric Chemistry and Physics (ACP)
dc.identifier.volume21
dc.identifier.issue23
dc.identifier.startpage17243
dc.identifier.endpage17265
dc.identifier.doihttps://doi.org/10.5194/acp-21-17243-2021
dc.identifier.urnURN:NBN:no-95722
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1680-7316
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/93133/1/acp-21-17243-2021.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International