Hide metadata

dc.date.accessioned2022-03-25T17:42:46Z
dc.date.available2022-03-25T17:42:46Z
dc.date.created2022-02-18T00:09:21Z
dc.date.issued2021
dc.identifier.citationIrons, Tom J. P. Garner, Adam Teale, Andrew Michael . Topological Analysis of Magnetically Induced Current Densities in Strong Magnetic Fields Using Stagnation Graphs. Chemistry. 2021, 3, 916-934
dc.identifier.urihttp://hdl.handle.net/10852/92909
dc.description.abstractStagnation graphs provide a useful tool to analyze the main topological features of the often complicated vector field associated with magnetically induced currents. Previously, these graphs have been constructed using response quantities appropriate for modest applied magnetic fields. We present an implementation capable of producing these graphs in arbitrarily strong magnetic fields, using current-density-functional theory. This enables us to study how the topology of the current vector field changes with the strength and orientation of the applied magnetic field. Applications to CH4, C2H2 and C2H4 are presented. In each case, we consider molecular geometries optimized in the presence of the magnetic field. The stagnation graphs reveal subtle changes to this vector field where the symmetry of the molecule remains constant. However, when the electronic state and symmetry of the corresponding equilibrium geometry changes with increasing field strength, the changes to the stagnation graph are extensive. We expect that the approach presented here will be helpful in interpreting changes in molecular structure and bonding in the strong-field regime.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTopological Analysis of Magnetically Induced Current Densities in Strong Magnetic Fields Using Stagnation Graphs
dc.typeJournal article
dc.creator.authorIrons, Tom J. P.
dc.creator.authorGarner, Adam
dc.creator.authorTeale, Andrew Michael
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin2003114
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemistry&rft.volume=3&rft.spage=916&rft.date=2021
dc.identifier.jtitleChemistry
dc.identifier.volume3
dc.identifier.issue3
dc.identifier.startpage916
dc.identifier.endpage934
dc.identifier.doihttps://doi.org/10.3390/chemistry3030067
dc.identifier.urnURN:NBN:no-95506
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2624-8549
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92909/1/chemistry-03-00067.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/262695
dc.relation.projectEC/H2020/772259


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International