Hide metadata

dc.date.accessioned2022-03-22T17:50:54Z
dc.date.available2022-03-22T17:50:54Z
dc.date.created2022-01-09T13:48:24Z
dc.date.issued2021
dc.identifier.citationLaestadius, Andre Penz, Markus Tellgren, Erik Ingemar . Revisiting density-functional theory of the total current density. Journal of Physics: Condensed Matter. 2021, 33(29), 295504
dc.identifier.urihttp://hdl.handle.net/10852/92744
dc.description.abstractAbstract Density-functional theory (DFT) requires an extra variable besides the electron density in order to properly incorporate magnetic-field effects. In a time-dependent setting, the gauge-invariant, total current density takes that role. A peculiar feature of the static ground-state setting is, however, that the gauge-dependent paramagnetic current density appears as the additional variable instead. An alternative, exact reformulation in terms of the total current density has long been sought but to date a work by Diener is the only available candidate. In that work, an unorthodox variational principle was used to establish a ground-state DFT of the total current density as well as an accompanying Hohenberg–Kohn-like result. We here reinterpret and clarify Diener’s formulation based on a maximin variational principle. Using simple facts about convexity implied by the resulting variational expressions, we prove that Diener’s formulation is unfortunately not capable of reproducing the correct ground-state energy and, furthermore, that the suggested construction of a Hohenberg–Kohn map contains an irreparable mistake.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleRevisiting density-functional theory of the total current density
dc.typeJournal article
dc.creator.authorLaestadius, Andre
dc.creator.authorPenz, Markus
dc.creator.authorTellgren, Erik Ingemar
cristin.unitcode185,15,12,70
cristin.unitnameHylleraas-senteret
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1977045
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physics: Condensed Matter&rft.volume=33&rft.spage=295504&rft.date=2021
dc.identifier.jtitleJournal of Physics: Condensed Matter
dc.identifier.volume33
dc.identifier.issue29
dc.identifier.doihttps://doi.org/10.1088/1361-648X/abf784
dc.identifier.urnURN:NBN:no-95305
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0953-8984
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92744/1/Laestadius_2021_J._Phys.%2B_Condens._Matter_33_295504.pdf
dc.type.versionPublishedVersion
cristin.articleid295504
dc.relation.projectERC/639508
dc.relation.projectNFR/287950
dc.relation.projectNFR/287906
dc.relation.projectNFR/262695


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International