Hide metadata

dc.date.accessioned2022-03-20T16:35:16Z
dc.date.available2022-03-20T16:35:16Z
dc.date.created2021-11-01T09:37:53Z
dc.date.issued2021
dc.identifier.citationEmhjellen, Linn Katinka Susanne Shi Strandbakke, Ragnar Haugsrud, Reidar . Electrical transport in a molten-solid V2O5–ZrV2O7 composite. Journal of Materials Chemistry A. 2021
dc.identifier.urihttp://hdl.handle.net/10852/92689
dc.description.abstractMolten-solid composite oxides are candidates as oxygen transport membranes (OTMs) at intermediate temperatures (500–700 °C). Effects of the constituent phases and interphases on surface reactions and transport processes in these composites are elusive. Here we contribute fundamental insight to such materials systems, applying electrochemical impedance spectroscopy (EIS) and electromotive force (emf) measurements to investigate the electrical conductivity characteristics of a 30 mol% V2O5–ZrV2O7 composite with a eutectic melting point at ∼670 °C. When V2O5 melts and increases the V2O5 volume percolation, the electrical conductivity increases by a factor of 10 and the activation energy increases from 0.21 to ∼0.7 eV. The oxygen red-ox reaction at the surface changes from being rate limited by charge transfer processes to mass transfer processes as a consequence of fast oxygen exchange in molten V2O5 as compared to the all-solid composite. These effects coincide with the ionic transport number rising from essentially zero to ∼0.4, reflecting a significant increase in the relative oxide ion conductivity. Oxygen permeation across a 30 mol% V2O5–ZrV2O7 membrane was estimated to be in the same order as for several dual-phase membranes, but one magnitude lower than for single-phase mixed conducting membranes at intermediate temperatures.
dc.languageEN
dc.rightsAttribution 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.titleElectrical transport in a molten-solid V2O5–ZrV2O7 composite
dc.typeJournal article
dc.creator.authorEmhjellen, Linn Katinka Susanne Shi
dc.creator.authorStrandbakke, Ragnar
dc.creator.authorHaugsrud, Reidar
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1950046
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Materials Chemistry A&rft.volume=&rft.spage=&rft.date=2021
dc.identifier.jtitleJournal of Materials Chemistry A
dc.identifier.volume9
dc.identifier.issue34
dc.identifier.startpage18537
dc.identifier.endpage18545
dc.identifier.doihttps://doi.org/10.1039/D1TA03750A
dc.identifier.urnURN:NBN:no-95273
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2050-7488
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92689/1/d1ta03750a.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/268450


Files in this item

Appears in the following Collection

Hide metadata

Attribution 3.0 Unported
This item's license is: Attribution 3.0 Unported