Hide metadata

dc.date.accessioned2022-03-19T18:09:13Z
dc.date.available2022-03-19T18:09:13Z
dc.date.created2021-01-31T23:14:31Z
dc.date.issued2021
dc.identifier.citationJæger, Karoline Horgmo Hustad, Kristian Gregorius Cai, Xing Tveito, Aslak . Efficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells. Frontiers in Physics. 2021, 8(579461)
dc.identifier.urihttp://hdl.handle.net/10852/92646
dc.description.abstractThe EMI model represents excitable cells in a more accurate manner than traditional homogenized models at the price of increased computational complexity. The increased complexity of solving the EMI model stems from a significant increase in the number of computational nodes and from the form of the linear systems that need to be solved. Here, we will show that the latter problem can be solved by careful use of operator splitting of the spatially coupled equations. By using this method, the linear systems can be broken into sub-problems that are of the classical type of linear, elliptic boundary value problems. Therefore, the vast collection of methods for solving linear, elliptic partial differential equations can be used. We demonstrate that this enables us to solve the systems using shared-memory parallel computers. The computing time scales perfectly with the number of physical cells. For a collection of 512 × 256 cells, we solved linear systems with about 2.5×108 unknows. Since the computational effort scales linearly with the number of physical cells, we believe that larger computers can be used to simulate millions of excitable cells and thus allow careful analysis of physiological systems of great importance.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEfficient numerical solution of the EMI model representing the extracellular space (E), cell membrane (M) and intracellular space (I) of a collection of cardiac cells
dc.typeJournal article
dc.creator.authorJæger, Karoline Horgmo
dc.creator.authorHustad, Kristian Gregorius
dc.creator.authorCai, Xing
dc.creator.authorTveito, Aslak
cristin.unitcode185,15,5,43
cristin.unitnameForskningsgruppen for biomedisinsk informatikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1884566
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers in Physics&rft.volume=8&rft.spage=&rft.date=2021
dc.identifier.jtitleFrontiers in Physics
dc.identifier.volume8
dc.identifier.issue579461
dc.identifier.doihttps://doi.org/10.3389/fphy.2020.579461
dc.identifier.urnURN:NBN:no-95204
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2296-424X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92646/1/fphy-08-579461.pdf
dc.type.versionPublishedVersion
cristin.articleid579461
dc.relation.projectNFR/270053


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International