Hide metadata

dc.date.accessioned2022-03-19T18:08:22Z
dc.date.available2022-03-19T18:08:22Z
dc.date.created2021-12-02T10:21:21Z
dc.date.issued2022
dc.identifier.citationKandula, Neelima McBeck, Jessica Ann Cordonnier, Benoît Weiss, Jérôme Dysthe, Dag Kristian Renard, François . Synchrotron 4D X-Ray Imaging Reveals Strain Localization at the Onset of System-Size Failure in Porous Reservoir Rocks. Pure and Applied Geophysics (PAGEOPH). 2021, 179, 325-350
dc.identifier.urihttp://hdl.handle.net/10852/92645
dc.description.abstractAbstract Understanding the mechanisms of strain localization leading to brittle failure in reservoir rocks can shed light on geomechanical processes such as porosity and permeability evolution during rock deformation, induced seismicity, fracturing, and subsidence in geological reservoirs. We perform triaxial compression tests on three types of porous reservoir rocks to reveal the local deformation mechanisms that control system-size failure. We deformed cylindrical samples of Adamswiller sandstone (23% porosity), Bentheim sandstone (23% porosity), and Anstrude limestone (20% porosity), using an X-ray transparent triaxial deformation apparatus. This apparatus enables the acquisition of three-dimensional synchrotron X-ray images, under in situ stress conditions. Analysis of the tomograms provide 3D distributions of the microfractures and dilatant pores from which we calculated the evolving macroporosity. Digital volume correlation analysis reveals the dominant strain localization mechanisms by providing the incremental strain components of pairs of tomograms. In the three rock types, damage localized as a single shear band or by the formation of conjugate bands at failure. The porosity evolution closely matches the evolution of the incremental strain components of dilation, contraction, and shear. With increasing confinement, the dominant strain in the sandstones shifts from dilative strain (Bentheim sandstone) to contractive strain (Adamswiller sandstone). Our study also links the formation of compactive shear bands with porosity variations in Anstrude limestone, which is characterized by a complex pore geometry. Scanning electron microscopy images indicate that the microscale mechanisms guiding strain localization are pore collapse and grain crushing in sandstones, and pore collapse, pore-emanated fractures and cataclasis in limestones. Our dynamic X-ray microtomography data brings unique insights on the correlation between the evolutions of rock microstructure, porosity evolution, and macroscopic strain during the approach to brittle failure in reservoir rocks.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSynchrotron 4D X-Ray Imaging Reveals Strain Localization at the Onset of System-Size Failure in Porous Reservoir Rocks
dc.typeJournal article
dc.creator.authorKandula, Neelima
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorCordonnier, Benoît
dc.creator.authorWeiss, Jérôme
dc.creator.authorDysthe, Dag Kristian
dc.creator.authorRenard, François
cristin.unitcode185,15,18,0
cristin.unitnameNJORD senter for studier av jordens fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1963180
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Pure and Applied Geophysics (PAGEOPH)&rft.volume=179&rft.spage=325&rft.date=2021
dc.identifier.jtitlePure and Applied Geophysics (PAGEOPH)
dc.identifier.volume179
dc.identifier.issue1
dc.identifier.startpage325
dc.identifier.endpage350
dc.identifier.doihttps://doi.org/10.1007/s00024-021-02902-z
dc.identifier.urnURN:NBN:no-95199
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0033-4553
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/92645/1/Kandula2022_Article_Synchrotron4DX-RayImagingRevea.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International