Hide metadata

dc.date.accessioned2022-03-03T16:45:32Z
dc.date.available2022-03-03T16:45:32Z
dc.date.created2021-11-15T14:09:10Z
dc.date.issued2021
dc.identifier.citationHaines, Emma Michie Mulrooney, Mark Joseph Braathen, Alvar . Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage. Solid Earth (SE). 2021, 12(6), 1259-1286
dc.identifier.urihttp://hdl.handle.net/10852/91771
dc.description.abstractSignificant uncertainties occur through varying methodologies when interpreting faults using seismic data. These uncertainties are carried through to the interpretation of how faults may act as baffles or barriers, or increase fluid flow. How fault segments are picked when interpreting structures, i.e. which seismic line orientation, bin spacing and line spacing are specified, as well as what surface generation algorithm is used, will dictate how rugose the surface is and hence will impact any further interpretation such as fault seal or fault growth models. We can observe that an optimum spacing for fault interpretation for this case study is set at approximately 100 m, both for accuracy of analysis but also for considering time invested. It appears that any additional detail through interpretation with a line spacing of ≤ 50 m adds complexity associated with sensitivities by the individual interpreter. Further, the locations of all seismic-scale fault segmentation identified on throw–distance plots using the finest line spacing are also observed when 100 m line spacing is used. Hence, interpreting at a finer scale may not necessarily improve the subsurface model and any related analysis but in fact lead to the production of very rough surfaces, which impacts any further fault analysis. Interpreting on spacing greater than 100 m often leads to overly smoothed fault surfaces that miss details that could be crucial, both for fault seal as well as for fault growth models. Uncertainty in seismic interpretation methodology will follow through to fault seal analysis, specifically for analysis of whether in situ stresses combined with increased pressure through CO2 injection will act to reactivate the faults, leading to up-fault fluid flow. We have shown that changing picking strategies alter the interpreted stability of the fault, where picking with an increased line spacing has shown to increase the overall fault stability. Picking strategy has shown to have a minor, although potentially crucial, impact on the predicted shale gouge ratio.
dc.languageEN
dc.publisherCopernicus Publications
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage
dc.typeJournal article
dc.creator.authorHaines, Emma Michie
dc.creator.authorMulrooney, Mark Joseph
dc.creator.authorBraathen, Alvar
cristin.unitcode185,15,22,50
cristin.unitnameSeksjon for geologi og geofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1954718
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Solid Earth (SE)&rft.volume=12&rft.spage=1259&rft.date=2021
dc.identifier.jtitleSolid Earth (SE)
dc.identifier.volume12
dc.identifier.issue6
dc.identifier.startpage1259
dc.identifier.endpage1286
dc.identifier.doihttps://doi.org/10.5194/se-12-1259-2021
dc.identifier.urnURN:NBN:no-94357
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1869-9510
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/91771/1/Michie%2Bet%2Bal.%252C%2B2021.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/257579


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International