Hide metadata

dc.date.accessioned2022-03-02T17:56:36Z
dc.date.available2022-03-02T17:56:36Z
dc.date.created2021-10-16T13:29:22Z
dc.date.issued2020
dc.identifier.citationKoch, Timo Flemisch, Bernd Rainer, Helmig Wiest, Roland Obrist, Dominik . A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. International Journal for Numerical Methods in Biomedical Engineering. 2020
dc.identifier.urihttp://hdl.handle.net/10852/91709
dc.description.abstractWe propose a new mathematical model to learn capillary leakage coefficients from dynamic susceptibility contrast MRI data. To this end, we derive an embedded mixed-dimension flow and transport model for brain tissue perfusion on a subvoxel scale. This model is used to obtain the contrast agent concentration distribution in a single MRI voxel during a perfusion MRI sequence. We further present a magnetic resonance signal model for the considered sequence including a model for local susceptibility effects. This allows modeling MR signal-time curves that can be compared with clinical MRI data. The proposed model can be used as a forward model in the inverse modeling problem of inferring model parameters such as the diffusive capillary wall conductivity. Acute multiple sclerosis lesions are associated with a breach in the integrity of the blood-brain barrier. Applying the model to perfusion MR data of a patient with acute multiple sclerosis lesions, we conclude that diffusive capillary wall conductivity is a good indicator for characterizing activity of lesions, even if other patient-specific model parameters are not well-known.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data
dc.typeJournal article
dc.creator.authorKoch, Timo
dc.creator.authorFlemisch, Bernd
dc.creator.authorRainer, Helmig
dc.creator.authorWiest, Roland
dc.creator.authorObrist, Dominik
cristin.unitcode185,15,13,15
cristin.unitnameMekanikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1946394
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International Journal for Numerical Methods in Biomedical Engineering&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleInternational Journal for Numerical Methods in Biomedical Engineering
dc.identifier.volume36
dc.identifier.issue2
dc.identifier.doihttps://doi.org/10.1002/cnm.3298
dc.identifier.urnURN:NBN:no-94282
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2040-7939
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/91709/1/KochetalIJNMBE2020.pdf
dc.type.versionPublishedVersion
cristin.articleide3298


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International