Hide metadata

dc.date.accessioned2022-02-28T17:54:07Z
dc.date.available2022-02-28T17:54:07Z
dc.date.created2022-02-03T13:32:57Z
dc.date.issued2021
dc.identifier.citationAlam, Shadab Arnold, Christian Aviles, Alejandro Bean, Rachel Cai, Yan-Chuan Cautun, Marius Cervantes-Cota, Jorge L. Cuesta-Lazoro, Carolina Devi, N. Chandrachani Eggemeier, Alexander Fromenteau, Sebastien Gonzalez-Morales, Alma X. Halenka, Vitali He, Jian-hua Hellwing, Wojciech A. Hernández-Aguayo, César Ishak, Mustapha Koyama, Kazuya Li, Baojiu de la Macorra, Axel Meneses Rizo, Jennifer Miller, Christopher Mueller, Eva-Maria Niz, Gustavo Ntelis, Pierros Rodríguez Otero, Matia Sabiu, Cristiano G. Slepian, Zachary Stark, Alejo Valenzuela, Octavio Valogiannis, Georgios Vargas-Magana, Mariana Winther, Hans Arnold Zarrouk, Pauline Zhao, Gong-Bo Zheng, Yi . Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements. Journal of Cosmology and Astroparticle Physics (JCAP). 2021, 2021(11)
dc.identifier.urihttp://hdl.handle.net/10852/91592
dc.description.abstractShortly after its discovery, General Relativity (GR) was applied to predict the behavior of our Universe on the largest scales, and later became the foundation of modern cosmology. Its validity has been verified on a range of scales and environments from the Solar system to merging black holes. However, experimental confirmations of GR on cosmological scales have so far lacked the accuracy one would hope for — its applications on those scales being largely based on extrapolation and its validity there sometimes questioned in the shadow of the discovery of the unexpected cosmic acceleration. Future astronomical instruments surveying the distribution and evolution of galaxies over substantial portions of the observable Universe, such as the Dark Energy Spectroscopic Instrument (DESI), will be able to measure the fingerprints of gravity and their statistical power will allow strong constraints on alternatives to GR. In this paper, based on a set of N -body simulations and mock galaxy catalogs, we study the predictions of a number of traditional and novel summary statistics beyond linear redshift distortions in two well-studied modified gravity models — chameleon f ( R ) gravity and a braneworld model — and the potential of testing these deviations from GR using DESI. These summary statistics employ a wide array of statistical properties of the galaxy and the underlying dark matter field, including two-point and higher-order statistics, environmental dependence, redshift space distortions and weak lensing. We find that they hold promising power for testing GR to unprecedented precision. The major future challenge is to make realistic, simulation-based mock galaxy catalogs for both GR and alternative models to fully exploit the statistic power of the DESI survey (by matching the volumes and galaxy number densities of the mocks to those in the real survey) and to better understand the impact of key systematic effects. Using these, we identify future simulation and analysis needs for gravity tests using DESI.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTowards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements
dc.typeJournal article
dc.creator.authorAlam, Shadab
dc.creator.authorArnold, Christian
dc.creator.authorAviles, Alejandro
dc.creator.authorBean, Rachel
dc.creator.authorCai, Yan-Chuan
dc.creator.authorCautun, Marius
dc.creator.authorCervantes-Cota, Jorge L.
dc.creator.authorCuesta-Lazoro, Carolina
dc.creator.authorDevi, N. Chandrachani
dc.creator.authorEggemeier, Alexander
dc.creator.authorFromenteau, Sebastien
dc.creator.authorGonzalez-Morales, Alma X.
dc.creator.authorHalenka, Vitali
dc.creator.authorHe, Jian-hua
dc.creator.authorHellwing, Wojciech A.
dc.creator.authorHernández-Aguayo, César
dc.creator.authorIshak, Mustapha
dc.creator.authorKoyama, Kazuya
dc.creator.authorLi, Baojiu
dc.creator.authorde la Macorra, Axel
dc.creator.authorMeneses Rizo, Jennifer
dc.creator.authorMiller, Christopher
dc.creator.authorMueller, Eva-Maria
dc.creator.authorNiz, Gustavo
dc.creator.authorNtelis, Pierros
dc.creator.authorRodríguez Otero, Matia
dc.creator.authorSabiu, Cristiano G.
dc.creator.authorSlepian, Zachary
dc.creator.authorStark, Alejo
dc.creator.authorValenzuela, Octavio
dc.creator.authorValogiannis, Georgios
dc.creator.authorVargas-Magana, Mariana
dc.creator.authorWinther, Hans Arnold
dc.creator.authorZarrouk, Pauline
dc.creator.authorZhao, Gong-Bo
dc.creator.authorZheng, Yi
cristin.unitcode185,15,3,0
cristin.unitnameInstitutt for teoretisk astrofysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1997409
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Cosmology and Astroparticle Physics (JCAP)&rft.volume=2021&rft.spage=&rft.date=2021
dc.identifier.jtitleJournal of Cosmology and Astroparticle Physics (JCAP)
dc.identifier.volume2021
dc.identifier.issue11
dc.identifier.pagecount105
dc.identifier.doihttps://doi.org/10.1088/1475-7516/2021/11/050
dc.identifier.urnURN:NBN:no-94191
dc.subject.nviVDP::Astrofysikk, astronomi: 438
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1475-7516
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/91592/1/pdf%2B%252818%2529.pdf
dc.type.versionPublishedVersion
cristin.articleid050


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International