Hide metadata

dc.date.accessioned2022-02-04T19:20:29Z
dc.date.available2022-02-04T19:20:29Z
dc.date.created2022-01-15T23:56:39Z
dc.date.issued2021
dc.identifier.citationBagge, Meike Klemann, Volker Steinberger, Bernhard Latinović, Milena Thomas, Maik . Glacial-Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures. Geochemistry Geophysics Geosystems. 2021, 22
dc.identifier.urihttp://hdl.handle.net/10852/90528
dc.description.abstractGlacial-isostatic adjustment (GIA) is the key process controlling relative sea-level (RSL) and paleo-topography. The viscoelastic response of the solid Earth is controlled by its viscosity structure. Therefore, the appropriate choice of Earth structure for GIA models is still an important area of research in geodynamics. We construct 18 3D Earth structures that are derived from seismic tomography models and are geodynamically constrained. We consider uncertainties in 3D viscosity structures that arise from variations in the conversion from seismic velocity to temperature variations (factor r) and radial viscosity profiles (RVP). We apply these Earth models to a 3D GIA model, VILMA, to investigate the influence of such structure on RSL predictions. The variabilities in 3D Earth structures and RSL predictions are investigated for globally distributed sites and applied for comparisons with regional 1D models for ice center (North America, Antarctica) and peripheral regions (Central Oregon Coast, San Jorge Gulf). The results from 1D and 3D models reveal substantial influence of lateral viscosity variations on RSL. Depending on time and location, the influence of factor r and/or RVP can be reverse, for example, the same RVP causes lowest RSL in Churchill and largest RSL in Oregon. Regional 1D models representing the structure beneath the ice and 3D models show similar influence of factor r and RVP on RSL prediction. This is not the case for regional 1D models representing the structure beneath peripheral regions indicating the dependence on the 3D Earth structure. The 3D Earth structures of this study are made available.
dc.languageEN
dc.publisherThe Geochemical Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleGlacial-Isostatic Adjustment Models Using Geodynamically Constrained 3D Earth Structures
dc.typeJournal article
dc.creator.authorBagge, Meike
dc.creator.authorKlemann, Volker
dc.creator.authorSteinberger, Bernhard
dc.creator.authorLatinović, Milena
dc.creator.authorThomas, Maik
cristin.unitcode185,15,22,40
cristin.unitnameSenter for Jordens utvikling og dynamikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1981849
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geochemistry Geophysics Geosystems&rft.volume=22&rft.spage=&rft.date=2021
dc.identifier.jtitleGeochemistry Geophysics Geosystems
dc.identifier.volume22
dc.identifier.issue11
dc.identifier.doihttps://doi.org/10.1029/2021GC009853
dc.identifier.urnURN:NBN:no-93109
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1525-2027
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/90528/1/Geochem%2BGeophys%2BGeosyst%2B-%2B2021%2B-%2BBagge%2B-%2BGlacial%25E2%2580%2590Isostatic%2BAdjustment%2BModels%2BUsing%2BGeodynamically%2BConstrained%2B3D%2BEarth.pdf
dc.type.versionPublishedVersion
cristin.articleide2021GC009853
dc.relation.projectNFR/223272


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International