Hide metadata

dc.date.accessioned2022-01-29T18:46:40Z
dc.date.available2022-01-29T18:46:40Z
dc.date.created2021-11-29T23:58:44Z
dc.date.issued2022
dc.identifier.citationMcBeck, Jessica Ann Aiken, John Cordonnier, B. Ben-Zion, Yehuda Renard, Francois . Predicting Fracture Network Development in Crystalline Rocks. Pure and Applied Geophysics (PAGEOPH). 2021
dc.identifier.urihttp://hdl.handle.net/10852/90303
dc.description.abstractAbstract The geometric properties of fractures influence whether they propagate, arrest, or coalesce with other fractures. Thus, quantifying the relationship between fracture network characteristics may help predict fracture network development, and perhaps precursors to catastrophic failure. To constrain the relationship and predictability of fracture characteristics, we deform eight one centimeter tall rock cores under triaxial compression while acquiring in situ X-ray tomograms. The tomograms reveal precise measurements of the fracture network characteristics above the spatial resolution of 6.5 µm. We develop machine learning models to predict the value of each characteristic using the other characteristics, and excluding the macroscopic stress or strain imposed on the rock. The models predict fracture development more accurately in the experiments performed on granite and monzonite, than the experiments on marble. Fracture network development may be more predictable in these igneous rocks because their microstructure is more mechanically homogeneous than the marble, producing more systematic fracture development that is not strongly impeded by grain contacts and cleavage planes. The varying performance of the models suggest that fracture volume, length, and aperture are the most predictable of the characteristics, while fracture orientation is the least predictable. Orientation does not correlate with length, as suggested by the idea that the orientation evolves with increasing differential stress and thus fracture length. This difference between the observed and expected relationship between orientation and length highlights the influence of mechanical heterogeneities and local stress perturbations on fracture growth as fractures propagate, link, and coalesce.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titlePredicting Fracture Network Development in Crystalline Rocks
dc.typeJournal article
dc.creator.authorMcBeck, Jessica Ann
dc.creator.authorAiken, John
dc.creator.authorCordonnier, B.
dc.creator.authorBen-Zion, Yehuda
dc.creator.authorRenard, Francois
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1961291
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Pure and Applied Geophysics (PAGEOPH)&rft.volume=&rft.spage=&rft.date=2021
dc.identifier.jtitlePure and Applied Geophysics (PAGEOPH)
dc.identifier.volume179
dc.identifier.issue1
dc.identifier.startpage275
dc.identifier.endpage299
dc.identifier.pagecount25
dc.identifier.doihttps://doi.org/10.1007/s00024-021-02908-7
dc.identifier.urnURN:NBN:no-92901
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0033-4553
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/90303/1/2021_PAGEOPH_McBeck.pdf
dc.type.versionPublishedVersion
dc.relation.projectNOTUR/NORSTORE/NS9073K


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International