Hide metadata

dc.date.accessioned2022-01-25T18:50:06Z
dc.date.available2022-01-25T18:50:06Z
dc.date.created2021-01-19T14:45:07Z
dc.date.issued2021
dc.identifier.citationKanas, Nikola Bjørk, Rasmus Wells, Kristin Høydalsvik Schuler, Raphael Einarsrud, Mari-Ann Pryds, Nini Wiik, Kjell . Time-enhanced performance of oxide thermoelectric modules based on a hybrid p-n junction. ACS Omega. 2021, 6, 197-205
dc.identifier.urihttp://hdl.handle.net/10852/90083
dc.description.abstractThe present challenge with all-oxide thermoelectric modules is their poor durability at high temperatures caused by the instability of the metal-oxide interfaces at the hot side. This work explains a new module concept based on a hybrid p–n junction, fabricated in one step by spark plasma co-sintering of Ca3Co4–xO9+δ (CCO, p-type) and CaMnO3−δ/CaMn2O4 (CMO, n-type). Different module (unicouple) designs were studied to obtain a thorough understanding of the role of the in situ formed hybrid p–n junction of Ca3CoMnO6 (CCMO, p-type) and Co-oxide rich phases (p-type) at the p–n junction (>700 °C) in the module performance. A time-enhanced performance of the modules attributed to this p–n junction formation was observed due to the unique electrical properties of the hybrid p–n junction being sufficiently conductive at high temperatures (>700 °C) and nonconductive at moderate and low temperatures. The alteration of module design resulted in a variation of the power density from 12.4 (3.1) to 28.9 mW/cm2 (7.2 mW) at ΔT ∼ 650 °C after 2 days of isothermal hold (900 °C hot side). This new concept provides a facile method for the fabrication of easily processable, cheap, and high-performance high-temperature modules.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleTime-enhanced performance of oxide thermoelectric modules based on a hybrid p-n junction
dc.typeJournal article
dc.creator.authorKanas, Nikola
dc.creator.authorBjørk, Rasmus
dc.creator.authorWells, Kristin Høydalsvik
dc.creator.authorSchuler, Raphael
dc.creator.authorEinarsrud, Mari-Ann
dc.creator.authorPryds, Nini
dc.creator.authorWiik, Kjell
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1874503
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Omega&rft.volume=6&rft.spage=197&rft.date=2021
dc.identifier.jtitleACS Omega
dc.identifier.volume6
dc.identifier.issue1
dc.identifier.startpage197
dc.identifier.endpage205
dc.identifier.doihttps://doi.org/10.1021/acsomega.0c04134
dc.identifier.urnURN:NBN:no-92741
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2470-1343
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/90083/1/Time-Enhanced%2BPerformance%2Bof%2BOxide%2BThermoelectric%2BModules%2BBased%2Bon%2Ba%2BHybrid%2Bp%25E2%2580%2593n%2BJunction.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/228854


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International