Hide metadata

dc.date.accessioned2021-12-20T16:10:57Z
dc.date.available2023-03-18T23:45:51Z
dc.date.created2021-04-07T09:13:17Z
dc.date.issued2021
dc.identifier.citationFjellvåg, Asbjørn Slagtern Fjellvåg, Øystein Kumar, Susmit Ruud, Amund Sjåstad, Anja Olafsen . Interplay of valence states and magnetic interactions in the perovskite system LaNi1–xRhxO3. Journal of Solid State Chemistry. 2021, 298
dc.identifier.urihttp://hdl.handle.net/10852/89665
dc.description.abstractWe report on the structural, magnetic and electronic properties of Rh substituted LaNiO3, LaNi1–xRhxO3 (0 ​≤ ​x ​≤ ​1). Increased Rh contents are associated with increased structural distortion, and we observe a phase transformation and an immiscibility gap between 0.15 ​≤ ​x ​≤ ​0.25, separating the R-3c and Pnma perovskite structure regimes. Structural evaluation by synchrotron X-ray diffraction, X-ray absorption spectroscopy and DC magnetic measurements suggest variations in oxidation state for the B-site cations, with Ni(II)/Rh(IV), in addition to Rh(III), dominating for high Rh-contents. Although ordering of Ni(II)/Rh(IV) is possible, no B-site ordering between Ni and Rh is observed for any composition. A metal-to-insulator transition occurs upon Rh-substitution, correlating with the structural transition. DC- and AC magnetic measurements reveal that several of the compositions are magnetically frustrated with both antiferro- and ferromagnetic behaviour at low temperatures. The antiferromagnetic interactions are dominating, while the ferromagnetic interactions increase with increasing Rh-content, to a maximum at x ​= ​0.80 and x ​= ​0.90 in LaNi1–xRhxO3. The mixed valence states are assumed to contribute with a ferromagnetic super-exchange interaction between Ni(II) and Rh(IV).
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleInterplay of valence states and magnetic interactions in the perovskite system LaNi1–xRhxO3
dc.typeJournal article
dc.creator.authorFjellvåg, Asbjørn Slagtern
dc.creator.authorFjellvåg, Øystein
dc.creator.authorKumar, Susmit
dc.creator.authorRuud, Amund
dc.creator.authorSjåstad, Anja Olafsen
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1902589
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Solid State Chemistry&rft.volume=298&rft.spage=&rft.date=2021
dc.identifier.jtitleJournal of Solid State Chemistry
dc.identifier.volume298
dc.identifier.pagecount7
dc.identifier.doihttps://doi.org/10.1016/j.jssc.2021.122124
dc.identifier.urnURN:NBN:no-92272
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0022-4596
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/89665/2/Paper%2B-%2BLaNi%25281-x%2529Rh%2528x%2529O%25283%2529%2B%25E2%2580%2593%2BRevised.pdf
dc.type.versionAcceptedVersion
cristin.articleid122124
dc.relation.projectNFR/272253
dc.relation.projectNFR/237922


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International