Hide metadata

dc.date.accessioned2021-11-04T12:36:03Z
dc.date.available2021-11-04T12:36:03Z
dc.date.created2021-10-06T09:32:48Z
dc.date.issued2021
dc.identifier.citationUlvestad, Asbjørn Skare, Marte Orderud Foss, Carl Erik Lie Krogsæter, Henrik Reichstein, Jakob Preston, Thomas J. Mæhlen, Jan Petter Andersen, Hanne Flåten Koposov, Alexey . Stoichiometry-Controlled Reversible Lithiation Capacity in Nanostructured Silicon Nitrides Enabled by in Situ Conversion Reaction. ACS Nano. 2021, 15(10), 16777-16787
dc.identifier.urihttp://hdl.handle.net/10852/89125
dc.description.abstractIn modern Li-based batteries, alloying anode materials have the potential to drastically improve the volumetric and specific energy storage capacity. For the past decade silicon has been viewed as a “Holy Grail” among these materials; however, severe stability issues limit its potential. Herein, we present amorphous substoichiometric silicon nitride (SiNx) as a convertible anode material, which allows overcoming the stability challenges associated with common alloying materials. Such material can be synthesized in a form of nanoparticles with seamlessly tunable chemical composition and particle size and, therefore, be used for the preparation of anodes for Li-based batteries directly through conventional slurry processing. Such SiNx materials were found to be capable of delivering high capacity that is controlled by the initial chemical composition of the nanoparticles. They exhibit an exceptional cycling stability, largely maintaining structural integrity of the nanoparticles and the complete electrodes, thus delivering stable electrochemical performance over the course of 1000 charge/discharge cycles. Such stability is achieved through the in situ conversion reaction, which was herein unambiguously confirmed by pair distribution function analysis of cycled SiNx nanoparticles revealing that active silicon domains and a stabilizing Li2SiN2 phase are formed in situ during the initial lithiation.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleStoichiometry-Controlled Reversible Lithiation Capacity in Nanostructured Silicon Nitrides Enabled by in Situ Conversion Reaction
dc.typeJournal article
dc.creator.authorUlvestad, Asbjørn
dc.creator.authorSkare, Marte Orderud
dc.creator.authorFoss, Carl Erik Lie
dc.creator.authorKrogsæter, Henrik
dc.creator.authorReichstein, Jakob
dc.creator.authorPreston, Thomas J.
dc.creator.authorMæhlen, Jan Petter
dc.creator.authorAndersen, Hanne Flåten
dc.creator.authorKoposov, Alexey
cristin.unitcode185,15,12,60
cristin.unitnameUorganisk materialkjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1943652
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Nano&rft.volume=15&rft.spage=16777&rft.date=2021
dc.identifier.jtitleACS Nano
dc.identifier.volume15
dc.identifier.issue10
dc.identifier.startpage16777
dc.identifier.endpage16787
dc.identifier.doihttps://doi.org/10.1021/acsnano.1c06927
dc.identifier.urnURN:NBN:no-91738
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1936-0851
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/89125/2/Ulvestad_et_al_ACS%2BNano_2021.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/257653
dc.relation.projectNFR/280885
dc.relation.projectNFR/280985


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International