Hide metadata

dc.date.accessioned2021-09-01T16:05:54Z
dc.date.available2021-09-01T16:05:54Z
dc.date.created2021-08-27T15:57:48Z
dc.date.issued2021
dc.identifier.citationSveinsson, Henrik Andersen Ning, Fulong Cao, Pinqiang Fang, Bin Malthe-Sørenssen, Anders . Grain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates. Journal of Physical Chemistry C. 2021, 125(18), 10034-10042
dc.identifier.urihttp://hdl.handle.net/10852/87549
dc.description.abstractThe shear failure mechanism of polycrystalline gas hydrates is critical for understanding marine geohazards related to gas hydrates under a changing climate and for safe gas recovery from gas hydrate reservoirs. Since current experimental techniques cannot resolve the mechanism on a spatial and temporal nanoscale, molecular simulations can assist with proposing and substantiating nanoscale failure mechanisms. Here, we report the shear failure of polycrystalline methane hydrates using direct molecular dynamics simulations. Based on these simulations, we suggest two modes of shear behavior, depending on the grain sizes, d, in the polycrystal: grain-size-strengthening behavior with a d1/3 grain size dependence for small grain sizes and grain-size-weakening behavior for large grain sizes. Through the crossover from strengthening to weakening behavior, the failure mode changes from shear failure with a failure plane parallel to the applied shear to tensile failure with a failure plane lying at an angle with the applied shear, spanning a network of grain boundaries. The existence of such a change in mechanism suggests that the Hall–Petch breakdown in methane hydrates is due to a change from grain boundary sliding to tensile opening being the most important failure mechanism when the grain size increases.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleGrain-Size-Governed Shear Failure Mechanism of Polycrystalline Methane Hydrates
dc.typeJournal article
dc.creator.authorSveinsson, Henrik Andersen
dc.creator.authorNing, Fulong
dc.creator.authorCao, Pinqiang
dc.creator.authorFang, Bin
dc.creator.authorMalthe-Sørenssen, Anders
cristin.unitcode185,15,4,10
cristin.unitnameKondenserte fasers fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1929402
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physical Chemistry C&rft.volume=125&rft.spage=10034&rft.date=2021
dc.identifier.jtitleJournal of Physical Chemistry C
dc.identifier.volume125
dc.identifier.issue18
dc.identifier.startpage10034
dc.identifier.endpage10042
dc.identifier.doihttps://doi.org/10.1021/acs.jpcc.1c00901
dc.identifier.urnURN:NBN:no-90181
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1932-7447
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/87549/2/acs.jpcc.1c00901.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International