Hide metadata

dc.date.accessioned2021-08-25T16:33:17Z
dc.date.available2021-08-25T16:33:17Z
dc.date.created2021-08-18T13:40:29Z
dc.date.issued2021
dc.identifier.citationIvashenko, Oleksii Johansson, Niclas Pettersen, Christine Jensen, Martin Zheng, Jian Schnadt, Joachim Sjåstad, Anja Olafsen . How Surface Species Drive Product Distribution during Ammonia Oxidation: An STM and Operando APXPS Study. ACS Catalysis. 2021
dc.identifier.urihttp://hdl.handle.net/10852/87265
dc.description.abstractThe oxidation of ammonia is a key reaction for the production of artificial fertilizers and for environmental protection. Depending on the area of application, the catalytic reaction needs to be tuned toward the production of either N2 or NO, and this selectivity is controlled by temperature, pressure, reactant ratio, and the type of catalyst. PtRh alloys are highly useful catalytic materials for the oxidation of ammonia, and they can be employed at different reaction conditions. In contrast to pure Pt and Rh catalysts, for which a large number of studies of ammonia oxidation reaction mechanism are available, for PtRh alloys, direct spectroscopic evidence for structure–performance relationship is still lacking. To understand the behavior of PtRh alloys, namely, what is their active phase under reaction conditions and how the alloy composition leads to a particular product distribution, we study the oxidation of ammonia over PtRh/Pt(111) surfaces by simultaneous operando ambient pressure X-ray photoelectron spectroscopy and mass spectrometry at 1 mbar total reaction pressure. These data are complemented by a catalyst surface characterization by scanning tunneling microscopy in ultrahigh vacuum. We establish that the predominant surface structure during NH3 oxidation strongly depends on the degree of Pt enrichment and the O2/NH3 mixing ratio. At the nanoscale, the selectivity toward N2 or NO production is driven by the surface populations of N and O species. These, in turn, are controlled by the nature of the alloying of Pt with Rh.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleHow Surface Species Drive Product Distribution during Ammonia Oxidation: An STM and Operando APXPS Study
dc.typeJournal article
dc.creator.authorIvashenko, Oleksii
dc.creator.authorJohansson, Niclas
dc.creator.authorPettersen, Christine
dc.creator.authorJensen, Martin
dc.creator.authorZheng, Jian
dc.creator.authorSchnadt, Joachim
dc.creator.authorSjåstad, Anja Olafsen
cristin.unitcode185,15,17,10
cristin.unitnameSenter for Materialvitenskap og Nanoteknologi kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1926968
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS Catalysis&rft.volume=&rft.spage=&rft.date=2021
dc.identifier.jtitleACS Catalysis
dc.identifier.volume11
dc.identifier.issue13
dc.identifier.startpage8261
dc.identifier.endpage8273
dc.identifier.doihttps://doi.org/10.1021/acscatal.1c00956
dc.identifier.urnURN:NBN:no-89929
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2155-5435
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/87265/2/acscatal.1c00956.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/237922
dc.relation.projectNFR/247753
dc.relation.projectINTERREG/20200417
dc.relation.projectVINNOVA/2018-04969
dc.relation.projectVETENSKAPSRÅDET/ 2018-07152


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International