Hide metadata

dc.date.accessioned2021-05-10T15:45:13Z
dc.date.available2021-05-10T15:45:13Z
dc.date.created2021-05-01T16:13:14Z
dc.date.issued2021
dc.identifier.citationBose, Souvik Joshi, Jayant de Jorge Henriques, Vasco Manuel Rouppe van der Voort, Luc . Spicules and downflows in the solar chromosphere. Astronomy and Astrophysics (A & A). 2021, 647
dc.identifier.urihttp://hdl.handle.net/10852/86011
dc.description.abstractContext. High-speed downflows have been observed in the solar transition region (TR) and lower corona for many decades. Despite their abundance, it has been hard to find signatures of such downflows in the solar chromosphere. Aims. In this work, we target an enhanced network region which shows ample occurrences of rapid spicular downflows in the H α spectral line, which could potentially be linked to high-speed TR downflowing counterparts. Methods. We used the k -means algorithm to classify the spectral profiles of on-disk spicules in H α and Ca  II K data observed from the Swedish 1 m Solar Telescope and employed an automated detection method based on advanced morphological image processing operations to detect such downflowing features, in conjunction with rapid blue-shifted and red-shifted excursions (RBEs and RREs). Results. We report the existence of a new category of RREs (termed as downflowing RRE) for the first time that, contrary to earlier interpretation, are associated with chromospheric field aligned downflows moving toward the strong magnetic field regions. Statistical analysis performed on nearly 20 000 RBEs and 15 000 RREs (including the downflowing counterparts), which were detected in our 97 min long dataset, shows that the downflowing RREs are very similar to RBEs and RREs except for their oppositely directed plane-of-sky motion. Furthermore, we also find that RBEs, RREs, and downflowing RREs can be represented by a wide range of spectral profiles with varying Doppler offsets, and H α line core widths, both along and perpendicular to the spicule axis, that causes them to be associated with multiple substructures which evolve together. Conclusions. We speculate that these rapid plasma downflows could well be the chromospheric counterparts of the commonly observed TR downflows.
dc.languageEN
dc.titleSpicules and downflows in the solar chromosphere
dc.typeJournal article
dc.creator.authorBose, Souvik
dc.creator.authorJoshi, Jayant
dc.creator.authorde Jorge Henriques, Vasco Manuel
dc.creator.authorRouppe van der Voort, Luc
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1907590
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy and Astrophysics (A & A)&rft.volume=647&rft.spage=&rft.date=2021
dc.identifier.jtitleAstronomy and Astrophysics (A & A)
dc.identifier.volume647
dc.identifier.pagecount23
dc.identifier.doihttps://doi.org/10.1051/0004-6361/202040014
dc.identifier.urnURN:NBN:no-88675
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0004-6361
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/86011/2/aa40014-20.pdf
dc.type.versionPublishedVersion
cristin.articleidA147
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata