Hide metadata

dc.date.accessioned2021-04-22T20:06:48Z
dc.date.available2021-04-22T20:06:48Z
dc.date.created2021-02-15T11:59:44Z
dc.date.issued2020
dc.identifier.citationDaversin-Catty, Cecile Vinje, Vegard Mardal, Kent-Andre Rognes, Marie E. . The mechanisms behind perivascular fluid flow. PLOS ONE. 2020, 15(12)
dc.identifier.urihttp://hdl.handle.net/10852/85482
dc.description.abstractFlow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60–260 μ m/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 μ m/s), though reaching up to 7 μ m/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20–30 μ m/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.
dc.languageEN
dc.publisherPLOS
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe mechanisms behind perivascular fluid flow
dc.typeJournal article
dc.creator.authorDaversin-Catty, Cecile
dc.creator.authorVinje, Vegard
dc.creator.authorMardal, Kent-Andre
dc.creator.authorRognes, Marie E.
cristin.unitcode185,15,13,15
cristin.unitnameMekanikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1889821
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLOS ONE&rft.volume=15&rft.spage=&rft.date=2020
dc.identifier.jtitlePLOS ONE
dc.identifier.volume15
dc.identifier.issue12
dc.identifier.pagecount0
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0244442
dc.identifier.urnURN:NBN:no-88140
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1932-6203
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/85482/2/journal.pone.0244442.pdf
dc.type.versionPublishedVersion
cristin.articleide0244442


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International