Hide metadata

dc.date.accessioned2021-04-09T19:51:09Z
dc.date.available2021-04-09T19:51:09Z
dc.date.created2020-10-27T08:33:30Z
dc.date.issued2020
dc.identifier.citationBorgersen, Jon Vines, Lasse Frodason, Ymir Kalmann Kuznetsov, Andrej von Wenckstern, Holger Grundmann, Marius Allen, Martin Perez, Jesus Zuniga Johansen, Klaus Magnus H . Experimental exploration of the amphoteric defect model by cryogenic ion irradiation of a range of wide band gap oxide materials. Journal of Physics: Condensed Matter. 2020, 32(50)
dc.identifier.urihttp://hdl.handle.net/10852/85130
dc.description.abstractThe evolution of electrical resistance as function of defect concentration is examined for the unipolar n-conducting oxides CdO, β-Ga2O3, In2O3, SnO2 and ZnO in order to explore the predictions of the amphoteric defect model. Intrinsic defects are introduced by ion irradiation at cryogenic temperatures, and the resistance is measured in-situ by current–voltage sweeps as a function of irradiation dose. Temperature dependent Hall effect measurements are performed to determine the carrier concentration and mobility of the samples before and after irradiation. After the ultimate irradiation step, the Ga2O3 and SnO2 samples have both turned highly resistive. In contrast, the In2O3 and ZnO samples are ultimately found to be less resistive than prior to irradiation, however, they both show an increased resistance at intermediate doses. Based on thermodynamic defect charge state transitions computed by hybrid density functional theory, a model expanding on the current amphoteric defect model is proposed.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleExperimental exploration of the amphoteric defect model by cryogenic ion irradiation of a range of wide band gap oxide materials
dc.typeJournal article
dc.creator.authorBorgersen, Jon
dc.creator.authorVines, Lasse
dc.creator.authorFrodason, Ymir Kalmann
dc.creator.authorKuznetsov, Andrej
dc.creator.authorvon Wenckstern, Holger
dc.creator.authorGrundmann, Marius
dc.creator.authorAllen, Martin
dc.creator.authorPerez, Jesus Zuniga
dc.creator.authorJohansen, Klaus Magnus H
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1842488
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Physics: Condensed Matter&rft.volume=32&rft.spage=&rft.date=2020
dc.identifier.jtitleJournal of Physics: Condensed Matter
dc.identifier.volume32
dc.identifier.issue50
dc.identifier.pagecount12
dc.identifier.doihttps://doi.org/10.1088/1361-648X/abac8b
dc.identifier.urnURN:NBN:no-87976
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0953-8984
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/85130/2/Borgersen_2020_J_Phys__Conden_Matter_32_505701.pdf
dc.type.versionPublishedVersion
cristin.articleid415704
dc.relation.projectNFR/245963


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International