Hide metadata

dc.date.accessioned2021-04-09T19:40:14Z
dc.date.available2022-05-04T22:46:07Z
dc.date.created2020-10-22T13:57:38Z
dc.date.issued2020
dc.identifier.citationPapa, Simone Pennacchioni, Giorgio Menegon, Luca Thielmann, Marcel . High-stress creep preceding coseismic rupturing in amphibolite-facies ultramylonites. Earth and Planetary Science Letters. 2020, 541
dc.identifier.urihttp://hdl.handle.net/10852/85125
dc.description.abstractCoeval pseudotachylytes (solidified melts produced during seismic slip) and mylonites are generally regarded as the geological record of transient seismic events during dominant ductile flow. Thermal runaway has been proposed as a model to explain the pseudotachylyte-mylonite association. In the Mont Mary unit (Western Alps), pseudotachylyte fault veins occur along the amphibolite-facies (ca. 550 °C; 0.35 GPa) ultramylonitic foliation of paragneisses. These veins formed at the same metamorphic conditions of the ultramylonites, thus potentially recording thermal runaway. We analysed the microstructure of quartz in ultramylonite and of ultramylonite clasts in pseudotachylyte to investigate the possible occurrence of thermal runaway. Quartz aggregates show an evolution under constant temperature to ultrafine-grained recrystallised grain size (2.5 μm), reflecting creep under high differential stresses (> 200 MPa) and high strain rates (10−9 s−1), along very narrow foliation-parallel layers. In the ultrafine aggregates, viscous grain boundary sliding became dominant and promoted cavitation leading to disintegration of quartz aggregates and precipitation, in the pore space, of biotite, oriented parallel to the main ultramylonitic foliation. The strain rate-limiting process was aseismic fluid-assisted precipitation of biotite. The potential occurrence, at the deformation conditions of the Mont Mary ultramylonites, of thermal runaway in pure quartz layers was investigated by numerical modelling. The models predict a switch from stable flow to thermal runaway at background strain rates faster than 10−9 s−1 for critical differential stresses that are comparable to the brittle strength of rocks. Deformation of ultramylonites occurred close to the conditions for thermal runaway to occur, but based on the microstructural record we conclude that the Mont Mary pseudotachylyte-mylonite association is best explained by brittle failure, triggered by transients of high differential stress and strain rate causing a downward deflection of the brittle-ductile transition.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleHigh-stress creep preceding coseismic rupturing in amphibolite-facies ultramylonites
dc.typeJournal article
dc.creator.authorPapa, Simone
dc.creator.authorPennacchioni, Giorgio
dc.creator.authorMenegon, Luca
dc.creator.authorThielmann, Marcel
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.cristin1841496
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Earth and Planetary Science Letters&rft.volume=541&rft.spage=&rft.date=2020
dc.identifier.jtitleEarth and Planetary Science Letters
dc.identifier.volume541
dc.identifier.doihttps://doi.org/10.1016/j.epsl.2020.116260
dc.identifier.urnURN:NBN:no-87961
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0012-821X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/85125/2/Papa%2Bet%2Bal%2B2020EPSL_self-archiving.pdf
dc.type.versionAcceptedVersion
cristin.articleid116260


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International