Hide metadata

dc.date.accessioned2021-03-19T21:22:54Z
dc.date.available2021-03-19T21:22:54Z
dc.date.created2021-02-01T17:20:48Z
dc.date.issued2020
dc.identifier.citationHu, Yang Miikkulainen, Ville Mizohata, Kenichiro Norby, Truls Eivind Nilsen, Ola Fjellvåg, Helmer . Ionic conductivity in LixTaOy thin films grown by Atomic Layer Deposition (ALD). Electrochimica Acta. 2020, 361, 137019
dc.identifier.urihttp://hdl.handle.net/10852/84177
dc.description.abstractThe material system Li-Ta-O is a promising candidate for thin-film solid-state electrolytes in Li-ion batteries. In the present study, we have varied the Li content x in LixTaOy thin films grown by atomic layer deposition (ALD) with the aim of improving the Li-ion conductivity. The amorphous films were grown at 225 °C on insulating sapphire and on conductive Ti substrates using tantalum ethoxide (Ta(OEt)5), lithium tert-butoxide (LiOtBu) and water as reactants. The film composition was determined by time-of-flight elastic recoil detection analysis (TOF-ERDA), displaying an almost linear relationship between the pulsed and deposited Li content. The ionic conductivities were determined by in-plane and cross-plane AC measurements, exhibiting an Arrhenius-type behaviour and comparatively weak thickness-dependence. Increasing Li content x from 0.32 to 0.98 increases the film conductivity by two orders of magnitude while higher Li content x = 1.73 results in decreased conductivity. A room-temperature conductivity σRT of ~10−8 S cm−1 is obtained for a 169 nm thick Li0.98TaOy film. The evolution of conductivity and activation energy suggests a competing effect between the concentration and the mobility of mobile Li ions when more Li are incorporated. The compositional dependence of Li transport mechanism is discussed.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleIonic conductivity in LixTaOy thin films grown by Atomic Layer Deposition (ALD)
dc.typeJournal article
dc.creator.authorHu, Yang
dc.creator.authorMiikkulainen, Ville
dc.creator.authorMizohata, Kenichiro
dc.creator.authorNorby, Truls Eivind
dc.creator.authorNilsen, Ola
dc.creator.authorFjellvåg, Helmer
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1885422
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electrochimica Acta&rft.volume=361&rft.spage=137019&rft.date=2020
dc.identifier.jtitleElectrochimica Acta
dc.identifier.volume361
dc.identifier.doihttps://doi.org/10.1016/j.electacta.2020.137019
dc.identifier.urnURN:NBN:no-87011
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0013-4686
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84177/2/1-s2.0-S0013468620314122-main.pdf
dc.type.versionPublishedVersion
cristin.articleid137019
dc.relation.projectNFR/197411
dc.relation.projectNFR/200030
dc.relation.projectNFR/220135


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International