Hide metadata

dc.date.accessioned2021-03-16T21:33:37Z
dc.date.available2021-03-16T21:33:37Z
dc.date.created2021-02-09T21:26:42Z
dc.date.issued2020
dc.identifier.citationJochriem, Markus Casper, Larissa A. Vanicek, Stefan Petersen, Dirk Kopacka, Holger Wurst, Klaus Müller, Thomas Winter, Rainer F. Bildstein, Benno . Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry. European Journal of Inorganic Chemistry (EurJIC). 2020, 2020(14), 1300-1310
dc.identifier.urihttp://hdl.handle.net/10852/84152
dc.description.abstractAs an extension of our continuing work in metallocenium chemistry, we report here on new functionalized rhodocenium salts. In contrast to isoelectronic cobaltocenium compounds, rhodium as a 4d metal allows synthetic routes via prefunctionalized cyclopentadienyl half‐sandwich precursors, thereby facilitating access to monofunctionalized rhodocenium salts containing substituents comprising methyl, trimethylsilyl, carboxylate and carboxylate ester as well as amide derivatives. Synthetic aspects, scope and limitations, as well as spectroscopic (1H/13C‐NMR, IR, HR‐MS), and structural (XRD) properties are reported. Like the parent rhodocenium ion, all new derivatives undergo two chemically consecutive reductions at potentials that depend on the respective ring substituent. The second reduction competes with a rapid reaction of the corresponding rhodocenes to their 18 VE dimers. Rate constants for this process range from 2 × 103 s–1 to 2.5 × 105 s–1 as estimated from digital simulations of experimental voltammograms. Rhodocenium carboxylic acid (8) constitutes a special case in that proton instead of metal reduction is observed at Pt or Au electrodes.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleRhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry
dc.typeJournal article
dc.creator.authorJochriem, Markus
dc.creator.authorCasper, Larissa A.
dc.creator.authorVanicek, Stefan
dc.creator.authorPetersen, Dirk
dc.creator.authorKopacka, Holger
dc.creator.authorWurst, Klaus
dc.creator.authorMüller, Thomas
dc.creator.authorWinter, Rainer F.
dc.creator.authorBildstein, Benno
cristin.unitcode185,0,0,0
cristin.unitnameUniversitetet i Oslo
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1888278
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=European Journal of Inorganic Chemistry (EurJIC)&rft.volume=2020&rft.spage=1300&rft.date=2020
dc.identifier.jtitleEuropean Journal of Inorganic Chemistry (EurJIC)
dc.identifier.volume2020
dc.identifier.issue14
dc.identifier.startpage1300
dc.identifier.endpage1310
dc.identifier.doihttps://doi.org/10.1002/ejic.202000071
dc.identifier.urnURN:NBN:no-86882
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1434-1948
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84152/2/ejic.202000071.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International