Hide metadata

dc.date.accessioned2021-03-15T19:13:45Z
dc.date.available2021-03-15T19:13:45Z
dc.date.created2020-09-30T11:47:47Z
dc.date.issued2020
dc.identifier.citationCalcagno, G. Agostini, M. Xiong, S. Matic, A. Palmqvist, A. E. C. Cavallo, Carmen . Effect of Nitrogen Doping on the Performance of Mesoporous CMK-8 Carbon Anodes for Li-Ion Batteries. Energies. 2020, 13(19)
dc.identifier.urihttp://hdl.handle.net/10852/84065
dc.description.abstractDesigning carbonaceous materials with heightened attention to the structural properties such as porosity, and to the functionalization of the surface, is a growing topic in the lithium-ion batteries (LIBs) field. Using a mesoporous silica KIT-6 hard template, mesoporous carbons belonging to the OMCs (ordered mesoporous carbons) family, namely 3D cubic CMK-8 and N-CMK-8 were synthesized and thoroughly structurally characterized. XPS analysis confirmed the successful introduction of nitrogen, highlighting the nature of the different nitrogen atoms incorporated in the structure. The work aims at evaluating the electrochemical performance of N-doped ordered mesoporous carbons as an anode in LIBs, underlining the effect of the nitrogen functionalization. The N-CMK-8 electrode reveals higher reversible capacity, better cycling stability, and rate capability, as compared to the CMK-8 electrode. Coupling the 3D channel network with the functional N-doping increased the reversible capacity to ~1000 mAh·g−1 for the N-CMK-8 from ~450 mAh·g−1 for the undoped CMK-8 electrode. A full Li-ion cell was built using N-CMK-8 as an anode, commercial LiFePO4, a cathode, and LP30 commercial electrolyte, showing stable performance for 100 cycles. The combination of nitrogen functionalization and ordered porosity is promising for the development of high performing functional anodes.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEffect of Nitrogen Doping on the Performance of Mesoporous CMK-8 Carbon Anodes for Li-Ion Batteries
dc.typeJournal article
dc.creator.authorCalcagno, G.
dc.creator.authorAgostini, M.
dc.creator.authorXiong, S.
dc.creator.authorMatic, A.
dc.creator.authorPalmqvist, A. E. C.
dc.creator.authorCavallo, Carmen
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1835490
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Energies&rft.volume=13&rft.spage=&rft.date=2020
dc.identifier.jtitleEnergies
dc.identifier.volume13
dc.identifier.issue19
dc.identifier.pagecount13
dc.identifier.doihttps://doi.org/10.3390/en13194998
dc.identifier.urnURN:NBN:no-86818
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1996-1073
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84065/2/energies-13-04998.pdf
dc.type.versionPublishedVersion
cristin.articleid4998


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International