Hide metadata

dc.date.accessioned2021-03-15T18:59:26Z
dc.date.available2021-03-15T18:59:26Z
dc.date.created2020-09-07T13:44:45Z
dc.date.issued2020
dc.identifier.citationLedum, Morten Bore, Sigbjørn Løland Cascella, Michele . Automated determination of hybrid particle-field parameters by machine learning. Molecular Physics. 2020, 118(19-20), 1-12
dc.identifier.urihttp://hdl.handle.net/10852/84060
dc.description.abstractThe hybrid particle-field molecular dynamics method is an efficient alternative to standard particle-based coarse grained approaches. In this work, we propose an automated protocol for optimisation of the effective parameters that define the interaction energy density functional, based on Bayesian optimisation. The machine-learning protocol makes use of an arbitrary fitness function defined upon a set of observables of relevance, which are optimally matched by an iterative process. Employing phospholipid bilayers as test systems, we demonstrate that the parameters obtained through our protocol are able to reproduce reference data better than currently employed sets derived by Flory-Huggins models. The optimisation procedure is robust and yields physically sound values. Moreover, we show that the parameters are satisfactorily transferable among chemically analogous species. Our protocol is general, and does not require heuristic a posteriori rebalancing. Therefore it is particularly suited for optimisation of reliable hybrid particle-field potentials of complex chemical mixtures, and extends the applicability corresponding simulations to all those systems for which calibration of the density functionals may not be done via simple theoretical models.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAutomated determination of hybrid particle-field parameters by machine learning
dc.typeJournal article
dc.creator.authorLedum, Morten
dc.creator.authorBore, Sigbjørn Løland
dc.creator.authorCascella, Michele
cristin.unitcode185,15,12,59
cristin.unitnameTeoretisk kjemi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1827784
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Molecular Physics&rft.volume=118&rft.spage=1&rft.date=2020
dc.identifier.jtitleMolecular Physics
dc.identifier.volume118
dc.identifier.issue19-20
dc.identifier.doihttps://doi.org/10.1080/00268976.2020.1785571
dc.identifier.urnURN:NBN:no-86817
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0026-8976
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84060/2/Automated%2Bdetermination%2Bof%2Bhybrid%2Bparticle%2Bfield%2Bparameters%2Bby%2Bmachine%2Blearning.pdf
dc.type.versionPublishedVersion
cristin.articleide1785571
dc.relation.projectNOTUR/NORSTORE/NN4654K
dc.relation.projectNFR/262695


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International