Hide metadata

dc.date.accessioned2021-03-14T21:25:37Z
dc.date.available2021-03-14T21:25:37Z
dc.date.created2021-01-20T11:28:29Z
dc.date.issued2020
dc.identifier.citationCieslar‐Pobuda, Artur Ahrens, Theresa D. Caglayan, Safak Behringer, Sidney Hannibal, Luciana Staerk, Judith . DNMT3B deficiency alters mitochondrial biogenesis and α‐ketoglutarate levels in human embryonic stem cells. Stem Cells International. 2020, 38(11), 1409-1422
dc.identifier.urihttp://hdl.handle.net/10852/84049
dc.description.abstractEmbryonic stem cell renewal and differentiation is regulated by metabolites that serve as cofactors for epigenetic enzymes. An increase of α‐ketoglutarate (α‐KG), a cofactor for histone and DNA demethylases, triggers multilineage differentiation in human embryonic stem cells (hESCs). To gain further insight into how the metabolic fluxes in pluripotent stem cells can be influenced by inactivating mutations in epigenetic enzymes, we generated hESCs deficient for de novo DNA methyltransferases (DNMTs) 3A and 3B. Our data reveal a bidirectional dependence between DNMT3B and α‐KG levels: a‐KG is significantly upregulated in cells deficient for DNMT3B, while DNMT3B expression is downregulated in hESCs treated with α‐KG. In addition, DNMT3B null hESCs exhibit a disturbed mitochondrial fission and fusion balance and a switch from glycolysis to oxidative phosphorylation. Taken together, our data reveal a novel link between DNMT3B and the metabolic flux of hESCs.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDNMT3B deficiency alters mitochondrial biogenesis and α‐ketoglutarate levels in human embryonic stem cells
dc.typeJournal article
dc.creator.authorCieslar‐Pobuda, Artur
dc.creator.authorAhrens, Theresa D.
dc.creator.authorCaglayan, Safak
dc.creator.authorBehringer, Sidney
dc.creator.authorHannibal, Luciana
dc.creator.authorStaerk, Judith
cristin.unitcode185,57,16,0
cristin.unitnameJudith Staerk Group - Stem Cells
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1875300
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Stem Cells International&rft.volume=38&rft.spage=1409&rft.date=2020
dc.identifier.jtitleStem Cells International
dc.identifier.volume38
dc.identifier.issue11
dc.identifier.startpage1409
dc.identifier.endpage1422
dc.identifier.doihttps://doi.org/10.1002/stem.3256
dc.identifier.urnURN:NBN:no-86758
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1687-966X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/84049/4/stem.3256.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/187615


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International