Hide metadata

dc.date.accessioned2021-03-12T21:41:54Z
dc.date.available2021-03-12T21:41:54Z
dc.date.created2020-10-13T17:09:03Z
dc.date.issued2020
dc.identifier.citationCardarilli, Gian Khanal, Gaurav Nunzio, Luca Re, Marco Fazzolari, Rocco Kumar, Rajesh . Memristive and Memory Impedance Behavior in a Photo-Annealed ZnO–rGO Thin-Film Device. Electronics. 2020, 9(2), 1-14
dc.identifier.urihttp://hdl.handle.net/10852/83965
dc.description.abstractAn oxygen-rich ZnO-reduced graphene oxide (rGO) thin film was synthesized using a photo-annealing technique from zinc precursor (ZnO)–graphene oxide (GO) sol–gel solution. X-ray diffraction (XRD) results show a clear characteristic peak corresponding to rGO. The scanning electron microscope (SEM) image of the prepared thin film shows an evenly distributed wrinkled surface structure. Transition Metal Oxide (TMO)-based memristive devices are nominees for beyond CMOS Non-Volatile Memory (NVRAM) devices. The two-terminal Metal–TMO (Insulator)–Metal (MIM) memristive device is fabricated using a synthesized ZnO–rGO as an active layer on fluorine-doped tin oxide (FTO)-coated glass substrate. Aluminum (Al) is deposited as a top metal contact on the ZnO–rGO active layer to complete the device. Photo annealing was used to reduce the GO to rGO to make the proposed method suitable for fabricating ZnO–rGO thin-film devices on flexible substrates. The electrical characterization of the Al–ZnO–rGO–FTO device confirms the coexistence of memristive and memimpedance characteristics. The coexistence of memory resistance and memory impedance in the same device could be valuable for developing novel programmable analog filters and self-resonating circuits and systems.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMemristive and Memory Impedance Behavior in a Photo-Annealed ZnO–rGO Thin-Film Device
dc.typeJournal article
dc.creator.authorCardarilli, Gian
dc.creator.authorKhanal, Gaurav
dc.creator.authorNunzio, Luca
dc.creator.authorRe, Marco
dc.creator.authorFazzolari, Rocco
dc.creator.authorKumar, Rajesh
cristin.unitcode185,15,17,0
cristin.unitnameSenter for materialvitenskap og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1839286
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electronics&rft.volume=9&rft.spage=1&rft.date=2020
dc.identifier.jtitleElectronics
dc.identifier.volume9
dc.identifier.issue2
dc.identifier.doihttps://doi.org/10.3390/electronics9020287
dc.identifier.urnURN:NBN:no-86691
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2079-9292
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/83965/1/electronics-09-00287-v2.pdf
dc.type.versionPublishedVersion
cristin.articleid287


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International