Hide metadata

dc.date.accessioned2021-03-07T20:52:13Z
dc.date.available2021-03-07T20:52:13Z
dc.date.created2021-01-27T15:40:03Z
dc.date.issued2020
dc.identifier.citationAlme, Johan Barnaföldi, Gergely Gábor Barthel, Rene Borshchov, Vyacheslav Bodova, Tea van den Brink, Anthony Brons, Stephan Chaar, Mamdouh Eikeland, Viljar Nilsen Feofilov, Grigory Genov, Georgi Grimstad, Silje Grøttvik, Ola Slettevoll Helstrup, Håvard Herland, Alf Kristoffer Hilde, Annar Eivindplass Igolkin, Sergey Keidel, Ralf Kobdaj, Chinorat van der Kolk, Naomi Listratenko, Oleksandr Malik, Qasim Waheed Mehendale, Shruti Vineet Meric, Ilker Nesbø, Simon Voigt Odland, Odd Harald Papp, Gábor Peitzmann, Thomas Pettersen, Helge Egil Seime Piersimoni, Pierluigi Protsenko, Maksym Rehman, Attiq Ur Richter, Matthias Røhrich, Dieter Samnøy, Andreas Tefre Seco, Joao Setterdahl, Lena Shafiee, Hesam Skjolddal, Øistein Jelmert Solheim, Emilie Haugland Songmoolnak, Arnon Sudár, Ákos Sølie, Jarle Rambo Tambave, Ganesh Jagannath Tymchuk, Ihor Ullaland, Kjetil Underdal, Håkon Andreas Varga-Kofarago, Monika Volz, Lennart Wagner, Boris Widerøe, Fredrik Mekki Xiao, RenZheng Yang, Shiming Yokoyama, Hiroki . A high-granularity digital tracking calorimeter optimized for proton CT. Frontiers in Physics. 2020, 8:568243, 1-20
dc.identifier.urihttp://hdl.handle.net/10852/83751
dc.description.abstractA typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA high-granularity digital tracking calorimeter optimized for proton CT
dc.typeJournal article
dc.creator.authorAlme, Johan
dc.creator.authorBarnaföldi, Gergely Gábor
dc.creator.authorBarthel, Rene
dc.creator.authorBorshchov, Vyacheslav
dc.creator.authorBodova, Tea
dc.creator.authorvan den Brink, Anthony
dc.creator.authorBrons, Stephan
dc.creator.authorChaar, Mamdouh
dc.creator.authorEikeland, Viljar Nilsen
dc.creator.authorFeofilov, Grigory
dc.creator.authorGenov, Georgi
dc.creator.authorGrimstad, Silje
dc.creator.authorGrøttvik, Ola Slettevoll
dc.creator.authorHelstrup, Håvard
dc.creator.authorHerland, Alf Kristoffer
dc.creator.authorHilde, Annar Eivindplass
dc.creator.authorIgolkin, Sergey
dc.creator.authorKeidel, Ralf
dc.creator.authorKobdaj, Chinorat
dc.creator.authorvan der Kolk, Naomi
dc.creator.authorListratenko, Oleksandr
dc.creator.authorMalik, Qasim Waheed
dc.creator.authorMehendale, Shruti Vineet
dc.creator.authorMeric, Ilker
dc.creator.authorNesbø, Simon Voigt
dc.creator.authorOdland, Odd Harald
dc.creator.authorPapp, Gábor
dc.creator.authorPeitzmann, Thomas
dc.creator.authorPettersen, Helge Egil Seime
dc.creator.authorPiersimoni, Pierluigi
dc.creator.authorProtsenko, Maksym
dc.creator.authorRehman, Attiq Ur
dc.creator.authorRichter, Matthias
dc.creator.authorRøhrich, Dieter
dc.creator.authorSamnøy, Andreas Tefre
dc.creator.authorSeco, Joao
dc.creator.authorSetterdahl, Lena
dc.creator.authorShafiee, Hesam
dc.creator.authorSkjolddal, Øistein Jelmert
dc.creator.authorSolheim, Emilie Haugland
dc.creator.authorSongmoolnak, Arnon
dc.creator.authorSudár, Ákos
dc.creator.authorSølie, Jarle Rambo
dc.creator.authorTambave, Ganesh Jagannath
dc.creator.authorTymchuk, Ihor
dc.creator.authorUllaland, Kjetil
dc.creator.authorUnderdal, Håkon Andreas
dc.creator.authorVarga-Kofarago, Monika
dc.creator.authorVolz, Lennart
dc.creator.authorWagner, Boris
dc.creator.authorWiderøe, Fredrik Mekki
dc.creator.authorXiao, RenZheng
dc.creator.authorYang, Shiming
dc.creator.authorYokoyama, Hiroki
cristin.unitcode185,15,4,30
cristin.unitnameElektronikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1880540
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers in Physics&rft.volume=8:568243&rft.spage=1&rft.date=2020
dc.identifier.jtitleFrontiers in Physics
dc.identifier.volume8
dc.identifier.doihttps://doi.org/10.3389/fphy.2020.568243
dc.identifier.urnURN:NBN:no-86475
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2296-424X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/83751/2/fphy-08-568243.pdf
dc.type.versionPublishedVersion
cristin.articleid568243


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International