Hide metadata

dc.date.accessioned2021-02-22T20:21:15Z
dc.date.available2021-02-22T20:21:15Z
dc.date.created2021-01-13T09:55:20Z
dc.date.issued2020
dc.identifier.citationGutterød, Emil Sebastian Lazzarini, Andrea Fjermestad, Torstein Kaur, Gurpreet Manzoli, Maela Bordiga, Silvia Svelle, Stian Lillerud, Karl Petter Skúlason, Egill Øien-Ødegaard, Sigurd Nova, Ainara Olsbye, Unni . Hydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society. 2020, 142(2), 999-1009
dc.identifier.urihttp://hdl.handle.net/10852/83530
dc.description.abstractMetal–organic frameworks (MOFs) show great prospect as catalysts and catalyst support materials. Yet, studies that address their dynamic, kinetic, and mechanistic role in target reactions are scarce. In this study, an exceptionally stable MOF catalyst consisting of Pt nanoparticles (NPs) embedded in a Zr-based UiO-67 MOF was subject to steady-state and transient kinetic studies involving H/D and 13C/12C exchange, coupled with operando infrared spectroscopy and density functional theory (DFT) modeling, targeting methanol formation from CO2/H2 feeds at 170 °C and 1–8 bar pressure. The study revealed that methanol is formed at the interface between the Pt NPs and defect Zr nodes via formate species attached to the Zr nodes. Methanol formation is mechanistically separated from the formation of coproducts CO and methane, except for hydrogen activation on the Pt NPs. Careful analysis of transient data revealed that the number of intermediates was higher than the number of open Zr sites in the MOF lattice around each Pt NP. Hence, additional Zr sites must be available for formate formation. DFT modeling revealed that Pt NP growth is sufficiently energetically favored to enable displacement of linkers and creation of open Zr sites during pretreatment. However, linker displacement during formate formation is energetically disfavored, in line with the excellent catalyst stability observed experimentally. Overall, the study provides firm evidence that methanol is formed at the interface of Pt NPs and linker-deficient Zr6O8 nodes resting on the Pt NP surface.
dc.languageEN
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleHydrogenation of CO2 to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework
dc.typeJournal article
dc.creator.authorGutterød, Emil Sebastian
dc.creator.authorLazzarini, Andrea
dc.creator.authorFjermestad, Torstein
dc.creator.authorKaur, Gurpreet
dc.creator.authorManzoli, Maela
dc.creator.authorBordiga, Silvia
dc.creator.authorSvelle, Stian
dc.creator.authorLillerud, Karl Petter
dc.creator.authorSkúlason, Egill
dc.creator.authorØien-Ødegaard, Sigurd
dc.creator.authorNova, Ainara
dc.creator.authorOlsbye, Unni
cristin.unitcode185,15,12,0
cristin.unitnameKjemisk institutt
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1778336
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of the American Chemical Society&rft.volume=142&rft.spage=999&rft.date=2020
dc.identifier.jtitleJournal of the American Chemical Society
dc.identifier.volume142
dc.identifier.issue2
dc.identifier.startpage999
dc.identifier.endpage1009
dc.identifier.doihttps://doi.org/10.1021/jacs.9b10873
dc.identifier.urnURN:NBN:no-86276
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0002-7863
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/83530/2/Gutterod-et-al_JACS_2020.pdf
dc.type.versionPublishedVersion


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial-NoDerivatives 4.0 International
This item's license is: Attribution-NonCommercial-NoDerivatives 4.0 International