Hide metadata

dc.date.accessioned2021-02-22T12:00:42Z
dc.date.available2021-02-22T12:00:42Z
dc.date.created2020-11-05T15:08:43Z
dc.date.issued2020
dc.identifier.citationRabbel, Ole Mair, Karen Galland, Olivier Grühser, Carina Meier, Tobias . Numerical Modeling of Fracture Network Evolution in Organic‐Rich Shale With Rapid Internal Fluid Generation. Journal of Geophysical Research (JGR): Solid Earth. 2020
dc.identifier.urihttp://hdl.handle.net/10852/83503
dc.description.abstractWhen low‐permeability and organic‐rich rocks such as shale experience sufficient heating, chemical reactions including shale dehydration and maturation of organic matter lead to internal fluid generation. This may cause substantial pore fluid overpressure and fracturing. In the vicinity of igneous intrusions emplaced in organic‐rich shales, temperatures of several hundred degrees accelerate these processes and lead to intense fracturing. The resulting fracture network provides hydraulic pathways, which allow fluid expulsion and affect hydrothermal fluid flow patterns. However, the evolution of these complex fracture networks and controls on geometry and connectivity are poorly understood. Here, we perform a numerical modeling study based on the extended finite element method to investigate coupled hydromechanical fracture network evolution due to fast internal fluid generation. We quantify the evolution of different initial fracture networks under varying external stresses by analyzing parameters including fracture length, opening, connectivity, and propagation angles. The results indicate a three‐phase process including (1) individual growth, (2) interaction, and (3) expulsion phase. Magnitude of external stress anisotropy and degree of fracture alignment with the largest principal stress correlate with increased fracture opening. We additionally find that although the external stress field controls the overall fracture orientation distribution, local stress interactions may cause significant deviations of fracture paths and control the coalescence characteristics of fractures. Establishing high connectivity in cases with horizontally aligned initial fractures requires stress anisotropy with σV > σH, while the initial orientation distribution is critical for connectivity if stresses are nearly isotropic.
dc.languageEN
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.titleNumerical Modeling of Fracture Network Evolution in Organic‐Rich Shale With Rapid Internal Fluid Generation
dc.typeJournal article
dc.creator.authorRabbel, Ole
dc.creator.authorMair, Karen
dc.creator.authorGalland, Olivier
dc.creator.authorGrühser, Carina
dc.creator.authorMeier, Tobias
cristin.unitcode185,15,22,20
cristin.unitnameGEO Physics of Geological processes
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.cristin1845350
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal of Geophysical Research (JGR): Solid Earth&rft.volume=&rft.spage=&rft.date=2020
dc.identifier.jtitleJournal of Geophysical Research (JGR): Solid Earth
dc.identifier.volume125
dc.identifier.issue7
dc.identifier.doihttps://doi.org/10.1029/2020JB019445
dc.identifier.urnURN:NBN:no-86226
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn2169-9313
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/83503/2/2020JB019445.pdf
dc.type.versionPublishedVersion
dc.relation.projectNFR/267775
dc.relation.projectUIO/EarthFlows Strategic ResearchInitiative


Files in this item

Appears in the following Collection

Hide metadata

Attribution-NonCommercial 4.0 International
This item's license is: Attribution-NonCommercial 4.0 International