Hide metadata

dc.date.accessioned2021-02-17T19:12:10Z
dc.date.available2021-02-17T19:12:10Z
dc.date.created2020-07-29T21:08:48Z
dc.date.issued2020
dc.identifier.citationMulrooney, Mark Joseph Osmond, Johnathon L. Skurtveit, Elin Faleide, Jan Inge Braathen, Alvar . Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea. Marine and Petroleum Geology. 2020, 121
dc.identifier.urihttp://hdl.handle.net/10852/83375
dc.description.abstractSmeaheia, a prominent fault block located on the Horda Platform, northern North Sea is identified as a potential subsurface CO2 storage site. We utilise the GN1101 3D seismic survey to generate a high-resolution subsurface geomodel to inform the structural style and evolution of the fault block, to investigate geological controls on proposed CO2 storage and provide a geometric framework as a basis for future analyses. Two basement-involved (first-order) north-south trending fault systems, the Vette Fault Zone (VFZ) and the Øygarden Fault Complex (ØFC), bound the 15 km-wide fault block. The VFZ bifurcates down-section where it is hard-linked with two separate basement structures, a phenomenon we term as “dual rooted”. Apart from activity during the Permo-Triassic (Rift Phase 1) and the Late Jurassic–Early Cretaceous (Rift Phase 2), we present evidence that rifting in this part of the North Sea continued into the Late Cretaceous with minor reactivation in the Palaeocene–Eocene. Two segments of the VFZ interacted and linked at a relay ramp during Rift Phase 2. Second-order (thin-skinned) faults show basement affinity and developed during Rift Phase 2 in two distinct pulses. A population of polygonal faults intersects the overburden and developed during the Eocene to middle Miocene. We have revised the areal extent of two structural closures that define the Smeaheia fault block, Alpha (VFZ footwall) and Beta (ØFC hanging wall) which consist of Upper Jurassic Viking Group target formations. Simplified cross-fault juxtaposition analysis of the VFZ and second-order intra-block faults are presented and inform pressure communication pathways between the Smeaheia and Tusse fault block, as well as reservoir integrity and compartmentalisation. The geomodel further identifies important geological controls on CO2 storage in the fault block including a thinning caprock above the Alpha structure, and identification of hard-linkage between deep tectonic faults and shallow polygonal faults.
dc.languageEN
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleStructural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda Platform, North Sea
dc.typeJournal article
dc.creator.authorMulrooney, Mark Joseph
dc.creator.authorOsmond, Johnathon L.
dc.creator.authorSkurtveit, Elin
dc.creator.authorFaleide, Jan Inge
dc.creator.authorBraathen, Alvar
cristin.unitcode185,15,22,0
cristin.unitnameInstitutt for geofag
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.cristin1820997
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Marine and Petroleum Geology&rft.volume=121&rft.spage=&rft.date=2020
dc.identifier.jtitleMarine and Petroleum Geology
dc.identifier.volume121
dc.identifier.pagecount33
dc.identifier.doihttps://doi.org/10.1016/j.marpetgeo.2020.104598
dc.identifier.urnURN:NBN:no-86110
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn0264-8172
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/83375/2/1-s2.0-S0264817220303810-main.pdf
dc.type.versionPublishedVersion
cristin.articleid104598
dc.relation.projectNFR/257579


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International