Hide metadata

dc.date.accessioned2021-02-06T20:21:52Z
dc.date.available2021-02-06T20:21:52Z
dc.date.created2021-01-14T21:54:09Z
dc.date.issued2020
dc.identifier.citationGilchrist-Millar, Caitlin A. Jess, David B. Grant, Samuel D. T. Keys, Peter H. Beck, Christian Jafarzadeh, Shahin Riedl, Julia M. Van Doorsselaere, Tom Ruiz Cobo, Basilio . Magnetoacoustic wave energy dissipation in the atmosphere of solar pores. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2020, 379(2190)
dc.identifier.urihttp://hdl.handle.net/10852/82953
dc.description.abstractThe suitability of solar pores as magnetic wave guides has been a key topic of discussion in recent years. Here, we present observational evidence of propagating magnetohydrodynamic wave activity in a group of five photospheric solar pores. Employing data obtained by the Facility Infrared Spectropolarimeter at the Dunn Solar Telescope, oscillations with periods of the order of 5 min were detected at varying atmospheric heights by examining Si ɪ 10827 Å line bisector velocities. Spectropolarimetric inversions, coupled with the spatially resolved root mean square bisector velocities, allowed the wave energy fluxes to be estimated as a function of atmospheric height for each pore. We find propagating magnetoacoustic sausage mode waves with energy fluxes on the order of 30 kW m−2 at an atmospheric height of 100 km, dropping to approximately 2 kW m−2 at an atmospheric height of around 500 km. The cross-sectional structuring of the energy fluxes reveals the presence of both body- and surface-mode sausage waves. Examination of the energy flux decay with atmospheric height provides an estimate of the damping length, found to have an average value across all five pores of Ld ≈ 268 km, similar to the photospheric density scale height. We find the damping lengths are longer for body mode waves, suggesting that surface mode sausage oscillations are able to more readily dissipate their embedded wave energies. This work verifies the suitability of solar pores to act as efficient conduits when guiding magnetoacoustic wave energy upwards into the outer solar atmosphere. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.
dc.languageEN
dc.publisherRoyal Society Publishing
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleMagnetoacoustic wave energy dissipation in the atmosphere of solar pores
dc.typeJournal article
dc.creator.authorGilchrist-Millar, Caitlin A.
dc.creator.authorJess, David B.
dc.creator.authorGrant, Samuel D. T.
dc.creator.authorKeys, Peter H.
dc.creator.authorBeck, Christian
dc.creator.authorJafarzadeh, Shahin
dc.creator.authorRiedl, Julia M.
dc.creator.authorVan Doorsselaere, Tom
dc.creator.authorRuiz Cobo, Basilio
cristin.unitcode185,15,3,40
cristin.unitnameRosseland senter for solfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.cristin1871683
dc.identifier.bibliographiccitationinfo:ofi/fmt:kev:mtx:ctx&ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences&rft.volume=379&rft.spage=&rft.date=2020
dc.identifier.jtitlePhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
dc.identifier.volume379
dc.identifier.issue2190
dc.identifier.pagecount19
dc.identifier.doihttps://doi.org/10.1098/rsta.2020.0172
dc.identifier.urnURN:NBN:no-85758
dc.type.documentTidsskriftartikkel
dc.type.peerreviewedPeer reviewed
dc.source.issn1364-503X
dc.identifier.fulltextFulltext https://www.duo.uio.no/bitstream/handle/10852/82953/1/2007.11594.pdf
dc.type.versionAcceptedVersion
cristin.articleid20200172
dc.relation.projectNFR/262622


Files in this item

Appears in the following Collection

Hide metadata

Attribution 4.0 International
This item's license is: Attribution 4.0 International